×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [5]
Authors
JIN XIAO QING [3]
LEI SIU LONG [2]
VONG SEAK WENG [2]
Document Type
Journal article [5]
Date Issued
2016 [2]
2015 [2]
2013 [1]
Language
英語English [4]
Source Publication
Communications i... [2]
International Jo... [1]
Journal of Compu... [1]
Numerical Algori... [1]
Indexed By
SCIE [3]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-5 of 5
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Finite difference schemes for two-dimensional time-space fractional differential equations
Journal article
Wang Z., Vong S., Lei S.-L.. Finite difference schemes for two-dimensional time-space fractional differential equations[J]. International Journal of Computer Mathematics, 2016, 93(3), 578-595.
Authors:
Wang Z.
;
Vong S.
;
Lei S.-L.
Favorite
|
TC[WOS]:
18
TC[Scopus]:
20
|
Submit date:2018/12/24
Adi Scheme
Discrete Energy Method
Preconditioned Gmres Method
Two-dimensional Fractional Differential Equation
Weighted And Shifted Grünwald Difference Operator
High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives
Journal article
Vong S., Lyu P., Chen X., Lei S.-L.. High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives[J]. Numerical Algorithms, 2016, 72(1), 195.
Authors:
Vong S.
;
Lyu P.
;
Chen X.
;
Lei S.-L.
Favorite
|
TC[WOS]:
69
TC[Scopus]:
73
|
Submit date:2018/10/30
Discrete Energy Method
High Order Difference Scheme
Preconditioned Gmres Method
Two-dimensional Fractional Differential Equation
Preconditioned iterative methods for twodimensional space-fractional diffusion equations
Journal article
Xiao-Qing Jin, Fu-Rong Lin, Zhi Zhao. Preconditioned iterative methods for twodimensional space-fractional diffusion equations[J]. Communications in Computational Physics, 2015, 18(2), 469-488.
Authors:
Xiao-Qing Jin
;
Fu-Rong Lin
;
Zhi Zhao
Favorite
|
TC[WOS]:
47
TC[Scopus]:
49
IF:
2.6
/
2.9
|
Submit date:2019/07/26
Fractional Diffusion Equation
Toeplitz Matrix
Fast Fourier Transform
Cn-wsgd Scheme
Preconditioned Gmres Method
Preconditioned Cgnr Method
Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations
Journal article
Jin X.-Q., Lin F.-R., Zhao Z.. Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations[J]. Communications in Computational Physics, 2015, 18(2), 469-488.
Authors:
Jin X.-Q.
;
Lin F.-R.
;
Zhao Z.
Favorite
|
TC[WOS]:
47
TC[Scopus]:
49
|
Submit date:2019/02/11
Cn-wsgd Scheme
Fast Fourier Transform
Fractional Diffusion Equation
Preconditioned Cgnr Method
Preconditioned Gmres Method
Toeplitz Matrix
Preconditioned iterative methods for fractional diffusion equation
Journal article
Lin F.-R., Yang S.-W., Jin X.-Q.. Preconditioned iterative methods for fractional diffusion equation[J]. Journal of Computational Physics, 2013, 256, 109.
Authors:
Lin F.-R.
;
Yang S.-W.
;
Jin X.-Q.
Favorite
|
TC[WOS]:
103
TC[Scopus]:
105
|
Submit date:2018/10/30
Fft
Fractional Diffusion Equation
Preconditioned Cgnr Method
Preconditioned Gmres Method
Toeplitz Matrix