×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [6]
Authors
VONG SEAK WENG [4]
JIN XIAO QING [1]
Document Type
Journal article [8]
Date Issued
2022 [1]
2020 [1]
2018 [2]
2014 [2]
2012 [1]
2002 [1]
More...
Language
英語English [8]
Source Publication
Applied Numerica... [3]
Biometrika [1]
Journal of Mecha... [1]
LINEAR & MULTILI... [1]
LINEAR ALGEBRA A... [1]
Linear and Multi... [1]
More...
Indexed By
SCIE [5]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-8 of 8
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
Issue Date Ascending
Issue Date Descending
Submit date Ascending
Submit date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Functional linear regression for discretely observed data: from ideal to reality
Journal article
Zhou, Hang, Yao, Fang, Zhang, Huiming. Functional linear regression for discretely observed data: from ideal to reality[J]. Biometrika, 2022, 110(2), 381-393.
Authors:
Zhou, Hang
;
Yao, Fang
;
Zhang, Huiming
Favorite
|
TC[WOS]:
8
TC[Scopus]:
8
IF:
2.4
/
3.1
|
Submit date:2024/01/02
Compact Operator
Perturbation Bound
Phase Transition
Principal Component Analysis
Multilinear PageRank: Uniqueness, error bound and perturbation analysis
Journal article
Li,Wen, Liu,Dongdong, Vong,Seak Weng, Xiao,Mingqing. Multilinear PageRank: Uniqueness, error bound and perturbation analysis[J]. Applied Numerical Mathematics, 2020, 156, 584-607.
Authors:
Li,Wen
;
Liu,Dongdong
;
Vong,Seak Weng
;
Xiao,Mingqing
Favorite
|
TC[WOS]:
12
TC[Scopus]:
11
IF:
2.2
/
2.3
|
Submit date:2021/03/09
Error Bound
Multilinear Pagerank Vector
Perturbation
Stochastic Tensor
Uniqueness Condition
On perturbation bounds of the linear complementarity problem
Journal article
Zheng,Hua, Vong,Seakweng, Li,Wen. On perturbation bounds of the linear complementarity problem[J]. Linear and Multilinear Algebra, 2018, 66(3), 625-638.
Authors:
Zheng,Hua
;
Vong,Seakweng
;
Li,Wen
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
0.9
/
1.0
|
Submit date:2021/03/09
Linear Complementarity Problems
Perturbation Bound
Sign Patterns
On perturbation bounds of the linear complementarity problem
Journal article
Zheng, Hua, Vong, Seakweng, Li, Wen. On perturbation bounds of the linear complementarity problem[J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66(3), 625-638.
Authors:
Zheng, Hua
;
Vong, Seakweng
;
Li, Wen
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
0.9
/
1.0
|
Submit date:2018/10/30
Perturbation Bound
Sign Patterns
Linear Complementarity Problems
On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices
Journal article
Li,Wen, Vong,Seak Weng, Peng,Xiao Fei. On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices[J]. Applied Numerical Mathematics, 2014, 83, 38-50.
Authors:
Li,Wen
;
Vong,Seak Weng
;
Peng,Xiao Fei
Favorite
|
TC[WOS]:
2
TC[Scopus]:
3
IF:
2.2
/
2.3
|
Submit date:2021/03/09
Eigenvalue Perturbation
Hermitian Block Tridiagonal Matrices
Saddle Point Matrices
Weyl's Bound
On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices
Journal article
Li W., Vong S.-W., Peng X.-F.. On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices[J]. Applied Numerical Mathematics, 2014, 83, 38-50.
Authors:
Li W.
;
Vong S.-W.
;
Peng X.-F.
Favorite
|
TC[WOS]:
2
TC[Scopus]:
3
|
Submit date:2018/12/24
Eigenvalue Perturbation
Hermitian Block Tridiagonal Matrices
Saddle Point Matrices
Weyl's Bound
Model-based probabilistic robust design with data-based uncertainty compensation for partially unknown system
Journal article
Lu X., Li H.-X., Chen C.L.P.. Model-based probabilistic robust design with data-based uncertainty compensation for partially unknown system[J]. Journal of Mechanical Design, Transactions of the ASME, 2012, 134(2).
Authors:
Lu X.
;
Li H.-X.
;
Chen C.L.P.
Favorite
|
TC[WOS]:
2
TC[Scopus]:
3
|
Submit date:2019/02/11
Bound Modeling
Covariance Matrix
Matrix Perturbation Theory
Model Uncertainty
Robust Design
Perturbation bounds for constrained and weighted linear least squares problems
Journal article
M.Gulliksson, Xiao-Qing Jin, Yi-Min Wei. Perturbation bounds for constrained and weighted linear least squares problems[J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 349(1-3), 221-232.
Authors:
M.Gulliksson
;
Xiao-Qing Jin
;
Yi-Min Wei
Favorite
|
TC[WOS]:
43
TC[Scopus]:
40
IF:
1.0
/
1.1
|
Submit date:2019/07/30
Linear Ls Problem
Constraint
Condition Number
(Weighted) Moore–penrose Inverse
Perturbation Bound
Weight