UM

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
Functional linear regression for discretely observed data: from ideal to reality Journal article
Zhou, Hang, Yao, Fang, Zhang, Huiming. Functional linear regression for discretely observed data: from ideal to reality[J]. Biometrika, 2022, 110(2), 381-393.
Authors:  Zhou, Hang;  Yao, Fang;  Zhang, Huiming
Favorite | TC[WOS]:8 TC[Scopus]:8  IF:2.4/3.1 | Submit date:2024/01/02
Compact Operator  Perturbation Bound  Phase Transition  Principal Component Analysis  
Multilinear PageRank: Uniqueness, error bound and perturbation analysis Journal article
Li,Wen, Liu,Dongdong, Vong,Seak Weng, Xiao,Mingqing. Multilinear PageRank: Uniqueness, error bound and perturbation analysis[J]. Applied Numerical Mathematics, 2020, 156, 584-607.
Authors:  Li,Wen;  Liu,Dongdong;  Vong,Seak Weng;  Xiao,Mingqing
Favorite | TC[WOS]:12 TC[Scopus]:11  IF:2.2/2.3 | Submit date:2021/03/09
Error Bound  Multilinear Pagerank Vector  Perturbation  Stochastic Tensor  Uniqueness Condition  
On perturbation bounds of the linear complementarity problem Journal article
Zheng,Hua, Vong,Seakweng, Li,Wen. On perturbation bounds of the linear complementarity problem[J]. Linear and Multilinear Algebra, 2018, 66(3), 625-638.
Authors:  Zheng,Hua;  Vong,Seakweng;  Li,Wen
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:0.9/1.0 | Submit date:2021/03/09
Linear Complementarity Problems  Perturbation Bound  Sign Patterns  
On perturbation bounds of the linear complementarity problem Journal article
Zheng, Hua, Vong, Seakweng, Li, Wen. On perturbation bounds of the linear complementarity problem[J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66(3), 625-638.
Authors:  Zheng, Hua;  Vong, Seakweng;  Li, Wen
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:0.9/1.0 | Submit date:2018/10/30
Perturbation Bound  Sign Patterns  Linear Complementarity Problems  
On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices Journal article
Li,Wen, Vong,Seak Weng, Peng,Xiao Fei. On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices[J]. Applied Numerical Mathematics, 2014, 83, 38-50.
Authors:  Li,Wen;  Vong,Seak Weng;  Peng,Xiao Fei
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:2.2/2.3 | Submit date:2021/03/09
Eigenvalue Perturbation  Hermitian Block Tridiagonal Matrices  Saddle Point Matrices  Weyl's Bound  
On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices Journal article
Li W., Vong S.-W., Peng X.-F.. On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices[J]. Applied Numerical Mathematics, 2014, 83, 38-50.
Authors:  Li W.;  Vong S.-W.;  Peng X.-F.
Favorite | TC[WOS]:2 TC[Scopus]:3 | Submit date:2018/12/24
Eigenvalue Perturbation  Hermitian Block Tridiagonal Matrices  Saddle Point Matrices  Weyl's Bound  
Model-based probabilistic robust design with data-based uncertainty compensation for partially unknown system Journal article
Lu X., Li H.-X., Chen C.L.P.. Model-based probabilistic robust design with data-based uncertainty compensation for partially unknown system[J]. Journal of Mechanical Design, Transactions of the ASME, 2012, 134(2).
Authors:  Lu X.;  Li H.-X.;  Chen C.L.P.
Favorite | TC[WOS]:2 TC[Scopus]:3 | Submit date:2019/02/11
Bound Modeling  Covariance Matrix  Matrix Perturbation Theory  Model Uncertainty  Robust Design  
Perturbation bounds for constrained and weighted linear least squares problems Journal article
M.Gulliksson, Xiao-Qing Jin, Yi-Min Wei. Perturbation bounds for constrained and weighted linear least squares problems[J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 349(1-3), 221-232.
Authors:  M.Gulliksson;  Xiao-Qing Jin;  Yi-Min Wei
Favorite | TC[WOS]:43 TC[Scopus]:40  IF:1.0/1.1 | Submit date:2019/07/30
Linear Ls Problem  Constraint  Condition Number  (Weighted) Moore–penrose Inverse  Perturbation Bound  Weight