UM

Browse/Search Results:  1-10 of 19 Help

Selected(0)Clear Items/Page:    Sort:
Generalized-Nash-Equilibrium-Based Pareto Solution for Transmission-Distribution-Coupled Optimal Power Flow Journal article
Lu, Kaicheng, Tang, Kunjie, Dong, Shufeng, Song, Yonghua. Generalized-Nash-Equilibrium-Based Pareto Solution for Transmission-Distribution-Coupled Optimal Power Flow[J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39(2), 4051-4063.
Authors:  Lu, Kaicheng;  Tang, Kunjie;  Dong, Shufeng;  Song, Yonghua
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:6.5/7.4 | Submit date:2024/04/02
Generalized Nash Equilibrium  Distributed Algorithm  Generalized Nash Game  Optimal Power Flow  Pareto Optimality  Transmission-distribution-coupled Systems  
Constraint learning-based optimal power dispatch for active distribution networks with extremely imbalanced data Journal article
Yonghua Song, Ge Chen, Hongcai Zhang. Constraint learning-based optimal power dispatch for active distribution networks with extremely imbalanced data[J]. CSEE Journal of Power and Energy Systems, 2024, 10(1), 51-65.
Authors:  Yonghua Song;  Ge Chen;  Hongcai Zhang
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:6.9/6.9 | Submit date:2024/04/24
Deep Learning  Demand Response  Distribution Networks  Imbalanced Data  Optimal Power Flow  
Efficient constraint learning for data-driven active distribution network operation Journal article
Ge Chen, Hongcai Zhang, Yonghua Song. Efficient constraint learning for data-driven active distribution network operation[J]. IEEE Transactions on Power Systems, 2024, 39(1), 1472-1484.
Authors:  Ge Chen;  Hongcai Zhang;  Yonghua Song
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:6.5/7.4 | Submit date:2023/07/12
Active Distribution Networks  Deep Learning  Renewable Generation  Optimal Power Flow  Flexible Sources  
Data-Driven Nonparametric Probabilistic Optimal Power Flow: An Integrated Probabilistic Forecasting and Analysis Methodology Journal article
Li, Yunyi, Wan, Can, Cao, Zhaojing, Song, Yonghua. Data-Driven Nonparametric Probabilistic Optimal Power Flow: An Integrated Probabilistic Forecasting and Analysis Methodology[J]. IEEE Transactions on Power Systems, 2023, 38(6), 5820-5833.
Authors:  Li, Yunyi;  Wan, Can;  Cao, Zhaojing;  Song, Yonghua
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:6.5/7.4 | Submit date:2023/12/04
Data-driven  Probabilistic Forecasting  Probabilistic Optimal Power Flow  Renewable Energy  Similarity Measurement  Uncertainty  
NSGA-III integrating eliminating strategy and dynamic constraint relaxation mechanism to solve many-objective optimal power flow problem Journal article
Jingrui Zhang, Junfeng Cai, Hongcai Zhang, Tengpeng Chen. NSGA-III integrating eliminating strategy and dynamic constraint relaxation mechanism to solve many-objective optimal power flow problem[J]. Applied Soft Computing, 2023, 146, 110612.
Authors:  Jingrui Zhang;  Junfeng Cai;  Hongcai Zhang;  Tengpeng Chen
Favorite | TC[WOS]:5 TC[Scopus]:11  IF:7.2/7.0 | Submit date:2023/07/22
Many-objective Optimization  Optimal Power Flow  Nsga-iii  Elimination Strategy  Dynamic Constraint Relaxation  
Optimal Power Flow Considering User-side Carbon Emission Allowances Based on Carbon Flow Theory 基于碳流理论考虑用户侧碳排放配额的最优潮流 Journal article
Huang, Minghao, Tang, Kunjie, Dong, Shufeng, Nan, Bin, Song, Yonghua. Optimal Power Flow Considering User-side Carbon Emission Allowances Based on Carbon Flow Theory 基于碳流理论考虑用户侧碳排放配额的最优潮流[J]. Dianwang Jishu/Power System Technology, 2023, 47(7), 2703-2712.
Authors:  Huang, Minghao;  Tang, Kunjie;  Dong, Shufeng;  Nan, Bin;  Song, Yonghua
Favorite | TC[Scopus]:6 | Submit date:2023/09/25
Carbon Emission Allowance Constraints  Carbon Flow Theory  Non-convex Mixed-integer Nonlinear Model  Optimal Power Flow  Particle Swarm Algorithm  
Many-objective optimal power flow problems based on distributed power flow calculations for hierarchical partition-managed power systems Journal article
Jingrui Zhang, Junfeng Cai, Silu Wang, Po Li. Many-objective optimal power flow problems based on distributed power flow calculations for hierarchical partition-managed power systems[J]. International Journal of Electrical Power and Energy Systems, 2023, 148, 108945.
Authors:  Jingrui Zhang;  Junfeng Cai;  Silu Wang;  Po Li
Favorite | TC[WOS]:3 TC[Scopus]:5  IF:5.0/4.6 | Submit date:2023/02/28
Distributed Power Flow Calculation  Nsga-iii  Optimal Power Flow  Partition-managed Power Systems  Patten Searching Algorithm  
Deep-Quantile-Regression-Based Surrogate Model for Joint Chance-Constrained Optimal Power Flow with Renewable Generation Journal article
Ge Chen, Hongcai Zhang, Hongxun Hui ,, Yonghua Song. Deep-Quantile-Regression-Based Surrogate Model for Joint Chance-Constrained Optimal Power Flow with Renewable Generation[J]. IEEE Transactions on Sustainable Energy, 2022, 14(1), 657-672.
Authors:  Ge Chen;  Hongcai Zhang;  Hongxun Hui ,;  Yonghua Song
Favorite | TC[WOS]:10 TC[Scopus]:11  IF:8.6/8.6 | Submit date:2023/01/30
Deep Quantile Regression  Distributed Renewable Generation  Distribution Network  Joint Chance Constraints  Optimal Power Flow  
Nonparametric Probabilistic Optimal Power Flow Journal article
Li, Yunyi, Wan, Can, Chen, Dawei, Song, Yonghua. Nonparametric Probabilistic Optimal Power Flow[J]. IEEE Transactions on Power Systems, 2022, 37(4), 2758-2770.
Authors:  Li, Yunyi;  Wan, Can;  Chen, Dawei;  Song, Yonghua
Favorite | TC[WOS]:14 TC[Scopus]:16  IF:6.5/7.4 | Submit date:2022/05/13
Probabilistic Optimal Power Flow  Critical Region Integral  Wind Power  Quantile  Uncertainty  
Chance-constrained DC Optimal Power Flow with Non-Gaussian Distributed Uncertainties Conference paper
Ge Chen, Hongcai Zhang, Yonghua Song. Chance-constrained DC Optimal Power Flow with Non-Gaussian Distributed Uncertainties[C], 2022.
Authors:  Ge Chen;  Hongcai Zhang;  Yonghua Song
Favorite | TC[Scopus]:3 | Submit date:2023/01/30
Dc Optimal Power Flow  Chance-constrained Programming  Non-gaussian Uncertainties  Gaussian Mixture Model  Linearization