UM

Browse/Search Results:  1-9 of 9 Help

Selected(0)Clear Items/Page:    Sort:
Sine transform based preconditioning techniques for space fractional diffusion equations Journal article
Qin, Hai Hua, Pang, Hong Kui, Sun, Hai Wei. Sine transform based preconditioning techniques for space fractional diffusion equations[J]. Numerical Linear Algebra with Applications, 2022, 30(4), e2474.
Authors:  Qin, Hai Hua;  Pang, Hong Kui;  Sun, Hai Wei
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:1.8/1.8 | Submit date:2023/01/30
Finite Difference Method  Gmres Method  Numerical Range  Space Fractional Derivative  Toeplitz Matrix  τ Preconditioner  
A note on numerical range and product of matrices Journal article
Cheng,Che Man, Gao,Yuan. A note on numerical range and product of matrices[J]. Linear Algebra and Its Applications, 2013, 438(7), 3139-3143.
Authors:  Cheng,Che Man;  Gao,Yuan
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:1.0/1.1 | Submit date:2021/03/09
Numerical Range  Spectrum  
A note on numerical range and product of matrices Journal article
Che-Man Cheng, Yuan Gao. A note on numerical range and product of matrices[J]. Linear Algebra and Its Applications, 2013, 438(7), 3139-3143.
Authors:  Che-Man Cheng;  Yuan Gao
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:1.0/1.1 | Submit date:2019/02/13
Numerical Range  Spectrum  
Shift-invert arnoldi approximation to the toeplitz matrix exponential Journal article
Lee,Spike T., Pang,Hong Kui, Sun,Hai Wei. Shift-invert arnoldi approximation to the toeplitz matrix exponential[J]. SIAM Journal on Scientific Computing, 2010, 32(2), 774-792.
Authors:  Lee,Spike T.;  Pang,Hong Kui;  Sun,Hai Wei
Favorite | TC[WOS]:48 TC[Scopus]:49 | Submit date:2019/05/27
Krylov Subspace  Matrix Exponential  Numerical Range  Shift-invert Arnoldi Method  Toeplitz Matrix  
Stability of T. Chan’s preconditioner from numerical range Journal article
Cheman Cheng, Xiaoqing Jin, Vaikuong Sin. Stability of T. Chan’s preconditioner from numerical range[J]. Numerical Mathematics Theory Methods and Applications, 2007, 16(1), 28-36.
Authors:  Cheman Cheng;  Xiaoqing Jin;  Vaikuong Sin
Favorite |   IF:1.9/1.3 | Submit date:2019/07/22
T. Chan’s precondiT.oner  Stability  Numerical Range  Boundary Value Method  
Stability properties of superoptimal preconditioner fromnumerical range Journal article
Che-Man Cheng, Xiao-Qing Jin, Yi-Min Wei. Stability properties of superoptimal preconditioner fromnumerical range[J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2006, 13(7), 513-521.
Authors:  Che-Man Cheng;  Xiao-Qing Jin;  Yi-Min Wei
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:1.8/1.8 | Submit date:2019/06/04
Superoptimal Preconditioner  Optimal Preconditioner  Stability  Numerical Range  
Stability properties of superoptimal preconditioner from numerical range Journal article
Che‐Man Cheng, Xiao‐Qing Jin, Yi‐Min Wei. Stability properties of superoptimal preconditioner from numerical range[J]. Numerical Linear Algebra with Applications, 2006, 13(7), 513-521.
Authors:  Che‐Man Cheng;  Xiao‐Qing Jin;  Yi‐Min Wei
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:1.8/1.8 | Submit date:2019/02/11
Numerical Range  Optimal Preconditioner  Stability  Superoptimal Preconditioner  
On the Hu-Hurley-Tam conjecture concerning the generalized numerical range Journal article
Cheng,Che Man, Li,Chi Kwong. On the Hu-Hurley-Tam conjecture concerning the generalized numerical range[J]. Linear Algebra and Its Applications, 2000, 305(1-3), 87-97.
Authors:  Cheng,Che Man;  Li,Chi Kwong
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:1.0/1.1 | Submit date:2021/03/09
15a60  Decomposable Numerical Range  Principal Character  
On the Hu-Hurley-Tam conjecture concerning the generalized numerical range Journal article
Cheng C.-M., Li C.-K.. On the Hu-Hurley-Tam conjecture concerning the generalized numerical range[J]. Linear Algebra and Its Applications, 2000, 305(1-3), 87-97.
Authors:  Cheng C.-M.;  Li C.-K.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:1.0/1.1 | Submit date:2019/02/13
15a60  Decomposable Numerical Range  Principal Character