UM

Browse/Search Results:  1-7 of 7 Help

Selected(0)Clear Items/Page:    Sort:
Probabilistic Solutions of a Stretched Beam Discretized with Finite Difference Scheme and Excited by Kanai-Tajimi Ground Motion Journal article
Er, G. K., Iu, V. P., Du, H. E.. Probabilistic Solutions of a Stretched Beam Discretized with Finite Difference Scheme and Excited by Kanai-Tajimi Ground Motion[J]. Archives of Mechanics, 2019, 433-457.
Authors:  Er, G. K.;  Iu, V. P.;  Du, H. E.
Favorite | TC[WOS]:3 TC[Scopus]:12  IF:1.1/0.9 | Submit date:2022/08/26
Stretched Beam  Nonlinear Random Vibration  Fpk Equation  Kanai-tajimi Ground Motion  Finite Difference Scheme  
Probabilistic solutions of a stretched beam discretized with finite difference scheme and excited by Kanai–Tajimi ground motion Journal article
Er,G. K., Iu,V. P., Du,H. E.. Probabilistic solutions of a stretched beam discretized with finite difference scheme and excited by Kanai–Tajimi ground motion[J]. Archives of Mechanics, 2019, 71(4-5), 433-457.
Authors:  Er,G. K.;  Iu,V. P.;  Du,H. E.
Favorite | TC[WOS]:3 TC[Scopus]:12  IF:1.1/0.9 | Submit date:2021/03/09
Finite Difference Scheme  Fpk Equation  Kanai–tajimi Ground Motion  Nonlinear Random Vibration  Stretched Beam  
Probabilistic solutions of the stretched beam systems formulated by finite difference scheme and excited by gaussian white noise Conference paper
Er,Guo Kang, Iu,Vai Pan, Wang,Kun, Du,Hai En. Probabilistic solutions of the stretched beam systems formulated by finite difference scheme and excited by gaussian white noise[C]:Springer, 2019, 99-114.
Authors:  Er,Guo Kang;  Iu,Vai Pan;  Wang,Kun;  Du,Hai En
Favorite | TC[WOS]:1 TC[Scopus]:1 | Submit date:2021/03/09
Finite Difference  Fpk Equation  Mdof System  Nonlinear Random Vibration  Sss-epc Method  Stretched Beam  
Analysis of the forced vibration of geometrically nonlinear cantilever beam with lumping mass by multiple scale Lindstedt-Poincare method Conference paper
Du, H., Er, G. K., Iu, V. P.. Analysis of the forced vibration of geometrically nonlinear cantilever beam with lumping mass by multiple scale Lindstedt-Poincare method[C], 2017.
Authors:  Du, H.;  Er, G. K.;  Iu, V. P.
Favorite |  | Submit date:2022/08/26
Forced Vibration  Geometrically Nonlinear Cantilever Beam  Multiple-Scales  Lindstedt-Poincaré Method  
Nonlinear Random Vibrations of Stretched Beam Discretized by Finite Difference Scheme and Excited by Gaussian White Noise Conference paper
Er, G. K., Iu, V. P., Wang, K., Du, H. E.. Nonlinear Random Vibrations of Stretched Beam Discretized by Finite Difference Scheme and Excited by Gaussian White Noise[C], 2017.
Authors:  Er, G. K.;  Iu, V. P.;  Wang, K.;  Du, H. E.
Favorite |  | Submit date:2022/08/26
Nonlinear beam  Fokker-Planck-Kolmogorov equation  probabilistic solution  MDOF system  
Nonlinear vibration of cantilever under the action of lateral harmonic excitations and axial load Conference paper
Er G.-K., Du H.. Nonlinear vibration of cantilever under the action of lateral harmonic excitations and axial load[C], 2015, 410-421.
Authors:  Er G.-K.;  Du H.
Favorite |  | Submit date:2019/02/13
Cantilever beam  Galerkin method  Hamilton principle  Nonlinear vibration  Runge-Kutta method  
The probabilistic solutions of some nonlinear stretched beams excited by filtered white noise Conference paper
Er G.K.. The probabilistic solutions of some nonlinear stretched beams excited by filtered white noise[C], 2013, 141-150.
Authors:  Er G.K.
Favorite | TC[WOS]:11 TC[Scopus]:12 | Submit date:2019/02/13
Nonlinear Stretched Beam  Multi-degree-of-freedom System  Filtered White Noise  Probabilistic Solution