UM

Browse/Search Results:  1-7 of 7 Help

Selected(0)Clear Items/Page:    Sort:
Optimal Error Estimates of SAV Crank–Nicolson Finite Element Method for the Coupled Nonlinear Schrödinger Equation Journal article
Li, Dongfang, Li, Xiaoxi, Sun, Hai wei. Optimal Error Estimates of SAV Crank–Nicolson Finite Element Method for the Coupled Nonlinear Schrödinger Equation[J]. Journal of Scientific Computing, 2023, 97(3), 71.
Authors:  Li, Dongfang;  Li, Xiaoxi;  Sun, Hai wei
Favorite | TC[WOS]:9 TC[Scopus]:8  IF:2.8/2.7 | Submit date:2024/01/02
Coupled Nonlinear Schrödinger Equation  Error Estimates  Mass- And Energy-conservation  Sav Crank–nicolson Finite Element Method  Scalar Auxiliary Variable Approach  
ALIKHANOV LINEARIZED GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR TIME-FRACTIONAL SCHRÖDINGER EQUATIONS Journal article
Qin, Hongyu, Wu, Fengyan, Zhou, Boya. ALIKHANOV LINEARIZED GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR TIME-FRACTIONAL SCHRÖDINGER EQUATIONS[J]. Journal of Computational Mathematics, 2023, 41(6), 1305-1324.
Authors:  Qin, Hongyu;  Wu, Fengyan;  Zhou, Boya
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:0.9/1.0 | Submit date:2024/02/22
Error Analysis  Fractional Grönwall Type Inequality  Nonlinear Time-fractional Schrödinger Equation  
A linearized compact ADI numerical method for the two-dimensional nonlinear delayed Schrödinger equation Journal article
Qin, Hongyu, Wu, Fengyan, Ding, Deng. A linearized compact ADI numerical method for the two-dimensional nonlinear delayed Schrödinger equation[J]. Applied Mathematics and Computation, 2022, 412, 126580.
Authors:  Qin, Hongyu;  Wu, Fengyan;  Ding, Deng
Favorite | TC[WOS]:3 TC[Scopus]:4  IF:3.5/3.1 | Submit date:2022/02/21
Compact Adi Numerical Method  Convergence  Nonlinear Delayed Schrödinger Equation  Stability  
Bifurcations and Exact Traveling Wave Solutions of a Modified Nonlinear Schrödinger Equation Journal article
Kou K. I., Li J.. Bifurcations and Exact Traveling Wave Solutions of a Modified Nonlinear Schrödinger Equation[J]. International Journal of Bifurcation and Chaos, 2016, 26(6).
Authors:  Kou K. I.;  Li J.
Favorite | TC[WOS]:3 TC[Scopus]:3 | Submit date:2019/02/13
Bifurcation  Compacton  Modified Nonlinear Schrödinger Equation  Peakon  Periodic Peakon  Periodic Wave  Solitary Wave  
A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations Journal article
Li,Leonard Z., Sun,Hai Wei, Tam,Sik Chung. A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations[J]. Computer Physics Communications, 2015, 187, 38-48.
Authors:  Li,Leonard Z.;  Sun,Hai Wei;  Tam,Sik Chung
Favorite | TC[WOS]:23 TC[Scopus]:23 | Submit date:2019/05/27
Alternating Direction Implicit Method  Combined Compact Difference Scheme  Cubic Nonlinear  Schrödinger Equation  Solution Pattern  Unconditional Stability  Wave-like Motion  
On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator Journal article
Vong S.-W., Meng Q.-J., Lei S.-L.. On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator[J]. Numerical Methods for Partial Differential Equations, 2013, 29(2), 693-705.
Authors:  Vong S.-W.;  Meng Q.-J.;  Lei S.-L.
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:2.1/2.8 | Submit date:2018/12/24
Conserved Quantity  Nonlinear Schrödinger Equation  Orthogonal Spline Collocation Method  Wave Operator  
On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator Journal article
Vong,Seak Weng, Meng,Qing Jiang, Lei,Siu Long. On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator[J]. Numerical Methods for Partial Differential Equations, 2013, 29(2), 693-705.
Authors:  Vong,Seak Weng;  Meng,Qing Jiang;  Lei,Siu Long
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:2.1/2.8 | Submit date:2021/03/09
Conserved Quantity  Nonlinear Schrödinger Equation  Orthogonal Spline Collocation Method  Wave Operator