×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [5]
Authors
SUN HAIWEI [2]
DING DENG [1]
LEI SIU LONG [1]
VONG SEAK WENG [1]
Document Type
Journal article [7]
Date Issued
2023 [2]
2022 [1]
2016 [1]
2015 [1]
2013 [2]
Language
英語English [6]
Source Publication
Numerical Method... [2]
Applied Mathemat... [1]
Computer Physics... [1]
International Jo... [1]
Journal of Compu... [1]
Journal of Scien... [1]
More...
Indexed By
SCIE [6]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-7 of 7
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Optimal Error Estimates of SAV Crank–Nicolson Finite Element Method for the Coupled Nonlinear Schrödinger Equation
Journal article
Li, Dongfang, Li, Xiaoxi, Sun, Hai wei. Optimal Error Estimates of SAV Crank–Nicolson Finite Element Method for the Coupled Nonlinear Schrödinger Equation[J]. Journal of Scientific Computing, 2023, 97(3), 71.
Authors:
Li, Dongfang
;
Li, Xiaoxi
;
Sun, Hai wei
Favorite
|
TC[WOS]:
9
TC[Scopus]:
8
IF:
2.8
/
2.7
|
Submit date:2024/01/02
Coupled Nonlinear Schrödinger Equation
Error Estimates
Mass- And Energy-conservation
Sav Crank–nicolson Finite Element Method
Scalar Auxiliary Variable Approach
ALIKHANOV LINEARIZED GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR TIME-FRACTIONAL SCHRÖDINGER EQUATIONS
Journal article
Qin, Hongyu, Wu, Fengyan, Zhou, Boya. ALIKHANOV LINEARIZED GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR TIME-FRACTIONAL SCHRÖDINGER EQUATIONS[J]. Journal of Computational Mathematics, 2023, 41(6), 1305-1324.
Authors:
Qin, Hongyu
;
Wu, Fengyan
;
Zhou, Boya
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
0.9
/
1.0
|
Submit date:2024/02/22
Error Analysis
Fractional Grönwall Type Inequality
Nonlinear Time-fractional Schrödinger Equation
A linearized compact ADI numerical method for the two-dimensional nonlinear delayed Schrödinger equation
Journal article
Qin, Hongyu, Wu, Fengyan, Ding, Deng. A linearized compact ADI numerical method for the two-dimensional nonlinear delayed Schrödinger equation[J]. Applied Mathematics and Computation, 2022, 412, 126580.
Authors:
Qin, Hongyu
;
Wu, Fengyan
;
Ding, Deng
Favorite
|
TC[WOS]:
3
TC[Scopus]:
4
IF:
3.5
/
3.1
|
Submit date:2022/02/21
Compact Adi Numerical Method
Convergence
Nonlinear Delayed Schrödinger Equation
Stability
Bifurcations and Exact Traveling Wave Solutions of a Modified Nonlinear Schrödinger Equation
Journal article
Kou K. I., Li J.. Bifurcations and Exact Traveling Wave Solutions of a Modified Nonlinear Schrödinger Equation[J]. International Journal of Bifurcation and Chaos, 2016, 26(6).
Authors:
Kou K. I.
;
Li J.
Favorite
|
TC[WOS]:
3
TC[Scopus]:
3
|
Submit date:2019/02/13
Bifurcation
Compacton
Modified Nonlinear Schrödinger Equation
Peakon
Periodic Peakon
Periodic Wave
Solitary Wave
A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations
Journal article
Li,Leonard Z., Sun,Hai Wei, Tam,Sik Chung. A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations[J]. Computer Physics Communications, 2015, 187, 38-48.
Authors:
Li,Leonard Z.
;
Sun,Hai Wei
;
Tam,Sik Chung
Favorite
|
TC[WOS]:
23
TC[Scopus]:
23
|
Submit date:2019/05/27
Alternating Direction Implicit Method
Combined Compact Difference Scheme
Cubic Nonlinear
Schrödinger Equation
Solution Pattern
Unconditional Stability
Wave-like Motion
On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator
Journal article
Vong S.-W., Meng Q.-J., Lei S.-L.. On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator[J]. Numerical Methods for Partial Differential Equations, 2013, 29(2), 693-705.
Authors:
Vong S.-W.
;
Meng Q.-J.
;
Lei S.-L.
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
2.1
/
2.8
|
Submit date:2018/12/24
Conserved Quantity
Nonlinear Schrödinger Equation
Orthogonal Spline Collocation Method
Wave Operator
On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator
Journal article
Vong,Seak Weng, Meng,Qing Jiang, Lei,Siu Long. On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator[J]. Numerical Methods for Partial Differential Equations, 2013, 29(2), 693-705.
Authors:
Vong,Seak Weng
;
Meng,Qing Jiang
;
Lei,Siu Long
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
2.1
/
2.8
|
Submit date:2021/03/09
Conserved Quantity
Nonlinear Schrödinger Equation
Orthogonal Spline Collocation Method
Wave Operator