UM

Browse/Search Results:  1-10 of 17 Help

Selected(0)Clear Items/Page:    Sort:
Variable-step L1 method combined with time two-grid algorithm for multi-singularity problems arising from two-dimensional nonlinear delay fractional equations Journal article
Ou, Caixia, Cen, Dakang, Vong, Seakweng. Variable-step L1 method combined with time two-grid algorithm for multi-singularity problems arising from two-dimensional nonlinear delay fractional equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2024, 139, 108270.
Authors:  Ou, Caixia;  Cen, Dakang;  Vong, Seakweng
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:3.4/3.3 | Submit date:2024/09/03
Finite Difference Method  Multi-singularity Problem  Nonlinear Delay Fractional Equations  Stability And Convergence  Time Two-grid Technique  
A second-order fitted scheme combined with time two-grid technique for two-dimensional nonlinear time fractional telegraph equations involving initial singularity Journal article
Ou, Caixia, Wang, Zhibo, Vong, Seakweng. A second-order fitted scheme combined with time two-grid technique for two-dimensional nonlinear time fractional telegraph equations involving initial singularity[J]. Journal of Computational and Applied Mathematics, 2024, 448, 115936.
Authors:  Ou, Caixia;  Wang, Zhibo;  Vong, Seakweng
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:2.1/2.1 | Submit date:2024/05/16
Fitted Scheme  Two-dimensional Nonlinear Fractional Telegraph Equations  Two-grid Technique  Weak Singularity  Telegraph Equations  
Mathematical Analysis and a Second-Order Compact Scheme for Nonlinear Caputo–Hadamard Fractional Sub-diffusion Equations Journal article
Guan, Kaijing, Ou, Caixia, Wang, Zhibo. Mathematical Analysis and a Second-Order Compact Scheme for Nonlinear Caputo–Hadamard Fractional Sub-diffusion Equations[J]. Mediterranean Journal of Mathematics, 2024, 21(3), 77.
Authors:  Guan, Kaijing;  Ou, Caixia;  Wang, Zhibo
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:1.1/1.1 | Submit date:2024/05/16
35r11  65m06  65m12  Discrete Fractional Gro¨nwall Inequality  Non-uniform Grids  Nonlinear Caputo–hadamard Fractional Differential Equations  Stability And Convergence  Weak Singularity  
Collaborative neurodynamic optimization for solving nonlinear equations Journal article
Guan,Huimin, Liu,Yang, Kou,Kit Ian, Cao,Jinde, Rutkowski,Leszek. Collaborative neurodynamic optimization for solving nonlinear equations[J]. NEURAL NETWORKS, 2023, 165, 483-490.
Authors:  Guan,Huimin;  Liu,Yang;  Kou,Kit Ian;  Cao,Jinde;  Rutkowski,Leszek
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:6.0/7.9 | Submit date:2023/08/03
Collaborative Neurodynamic Optimization  Distributed Optimization  Nonconvex Optimization  Nonlinear Equations  
PINL: PRECONDITIONED INEXACT NEWTON WITH LEARNING CAPABILITY FOR NONLINEAR SYSTEM OF EQUATIONS Journal article
Luo,Li, Cai,Xiao Chuan. PINL: PRECONDITIONED INEXACT NEWTON WITH LEARNING CAPABILITY FOR NONLINEAR SYSTEM OF EQUATIONS[J]. SIAM Journal on Scientific Computing, 2023, 45(2), A849-A871.
Authors:  Luo,Li;  Cai,Xiao Chuan
Favorite | TC[WOS]:1 TC[Scopus]:2  IF:3.0/3.2 | Submit date:2023/08/03
Incompressible Navier-stokes Equations  Inexact Newton  Learning-based Nonlinear Preconditioning  Nonlinear System Of Algebraic Equations  Principal Component Analysis  
A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations Journal article
Yu, Jian Wei, Zhang, Chun Hua, Huang, Xin, Wang, Xiang. A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations[J]. Japan Journal of Industrial and Applied Mathematics, 2023, 40(1), 537-562.
Authors:  Yu, Jian Wei;  Zhang, Chun Hua;  Huang, Xin;  Wang, Xiang
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:0.7/0.7 | Submit date:2023/01/30
Circulant Preconditioner  Linear System  Nonlinear Space-fractional Diffusion Equations  Preconditioned Conjugated Gradient Method  Spectrum  
A Novel Discrete Fractional Grönwall-Type Inequality and Its Application in Pointwise-in-Time Error Estimates Journal article
Li, Dongfang, She, Mianfu, Sun, Hai wei, Yan, Xiaoqiang. A Novel Discrete Fractional Grönwall-Type Inequality and Its Application in Pointwise-in-Time Error Estimates[J]. Journal of Scientific Computing, 2022, 91(1).
Authors:  Li, Dongfang;  She, Mianfu;  Sun, Hai wei;  Yan, Xiaoqiang
Favorite | TC[WOS]:8 TC[Scopus]:8  IF:2.8/2.7 | Submit date:2022/05/04
High-order Time-stepping Methods  Modified Grönwall Inequality  Nonlinear Time-fractional Equations  Pointwise-in-time Error Estimates  
A novel discrete fractional Gronwall-type inequality and its application in pointwise-in-time error estimates Journal article
Li, D. F., She, M.F., Sun, H. W., Yan, X.Q.. A novel discrete fractional Gronwall-type inequality and its application in pointwise-in-time error estimates[J]. Journal of Scientific Computing, 2022, 91(1), 1-27.
Authors:  Li, D. F.;  She, M.F.;  Sun, H. W.;  Yan, X.Q.
Favorite | TC[WOS]:8 TC[Scopus]:8 | Submit date:2022/07/25
Nonlinear Time-fractional Equations  High-order Time-stepping Methods  Modified Grönwall Inequality  Pointwise-in-time Error Estimates  
A SPATIALLY SIXTH-ORDER HYBRID L1-CCD METHOD FOR SOLVING TIME FRACTIONAL SCHRÖDINGER EQUATIONS Journal article
Zhang,Chun Hua, Jin,Jun Wei, Sun,Hai Wei, Sheng,Qin. A SPATIALLY SIXTH-ORDER HYBRID L1-CCD METHOD FOR SOLVING TIME FRACTIONAL SCHRÖDINGER EQUATIONS[J]. Applications of Mathematics, 2021, 66(2), 213–232.
Authors:  Zhang,Chun Hua;  Jin,Jun Wei;  Sun,Hai Wei;  Sheng,Qin
Favorite | TC[WOS]:3 TC[Scopus]:5  IF:0.6/0.6 | Submit date:2021/03/09
Nonlinear Time Fractional Schrödinger Equations  L1 Formula  Hybrid Compact Difference Method  Linearization  Unconditional Stability  
A SPATIALLY SIXTH-ORDER HYBRID L1-CCD METHOD FOR SOLVING TIME FRACTIONAL SCHRÖDINGER EQUATIONS Journal article
Zhang,Chun Hua, Jin,Jun Wei, Sun,Hai Wei, Sheng,Qin. A SPATIALLY SIXTH-ORDER HYBRID L1-CCD METHOD FOR SOLVING TIME FRACTIONAL SCHRÖDINGER EQUATIONS[J]. Applications of Mathematics, 2021, 66(2), 213-232.
Authors:  Zhang,Chun Hua;  Jin,Jun Wei;  Sun,Hai Wei;  Sheng,Qin
Favorite | TC[WOS]:3 TC[Scopus]:5  IF:0.6/0.6 | Submit date:2022/07/25
Nonlinear Time Fractional Schrödinger Equations  L1 Formula  Hybrid Compact Difference Method  Linearization  Unconditional Stability