×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [6]
Authors
JIN XIAO QING [6]
Document Type
Journal article [6]
Date Issued
2022 [1]
2016 [2]
2015 [2]
2011 [1]
Language
英語English [5]
Source Publication
Applied Numerica... [1]
Inverse Problems [1]
Journal of Compu... [1]
Numerical Mathem... [1]
SIAM Journal on ... [1]
SIAM Journal on ... [1]
More...
Indexed By
SCIE [6]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-6 of 6
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
The Riemannian two-step perturbed Gauss–Newton method for least squares inverse eigenvalue problems
Journal article
Zhao, Zhi, Jin, Xiao Qing, Yao, Teng Teng. The Riemannian two-step perturbed Gauss–Newton method for least squares inverse eigenvalue problems[J]. Journal of Computational and Applied Mathematics, 2022, 405, 113971.
Authors:
Zhao, Zhi
;
Jin, Xiao Qing
;
Yao, Teng Teng
Favorite
|
TC[WOS]:
1
TC[Scopus]:
1
IF:
2.1
/
2.1
|
Submit date:2022/05/13
Nonlinear Least Squares Problem
Parameterized Least Squares Inverse Eigenvalue Problem
Two-step Perturbed Gauss–newton Method
An Ulm-like cayley transform method for inverse eigenvalue problems with multiple eigenvalues
Journal article
Shen W., Li C., Jin X.. An Ulm-like cayley transform method for inverse eigenvalue problems with multiple eigenvalues[J]. Numerical Mathematics, 2016, 9(4), 664-685.
Authors:
Shen W.
;
Li C.
;
Jin X.
Favorite
|
TC[WOS]:
11
TC[Scopus]:
9
|
Submit date:2019/02/11
Inverse Eigenvalue Problem
Nonlinear Equation
Ulm-like Method
A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems
Journal article
Zhao Z., Jin X.-Q., Bai Z.-J.. A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems[J]. SIAM Journal on Numerical Analysis, 2016, 54(4), 2015-2035.
Authors:
Zhao Z.
;
Jin X.-Q.
;
Bai Z.-J.
Favorite
|
TC[WOS]:
23
TC[Scopus]:
25
|
Submit date:2019/02/11
Geometric Nonlinear Conjugate Gradient Method
Inverse Eigenvalue Problem
Isospectral Flow Method
Oblique Manifold
Stochastic Matrix
An inexact Cayley transform method for inverse eigenvalue problems with multiple eigenvalues
Journal article
Shen W.P., Li C., Jin X.Q.. An inexact Cayley transform method for inverse eigenvalue problems with multiple eigenvalues[J]. Inverse Problems, 2015, 31(8).
Authors:
Shen W.P.
;
Li C.
;
Jin X.Q.
Favorite
|
TC[WOS]:
21
TC[Scopus]:
19
|
Submit date:2019/02/11
Inexact Cayley Transform Method
Inverse Eigenvalue Problem
Nonlinear Equation
A riemannian Newton algorithm for nonlinear eigenvalue problems
Journal article
Zhao Z., Bai Z.-J., Jin X.-Q.. A riemannian Newton algorithm for nonlinear eigenvalue problems[J]. SIAM Journal on Matrix Analysis and Applications, 2015, 36(2), 752-774.
Authors:
Zhao Z.
;
Bai Z.-J.
;
Jin X.-Q.
Favorite
|
TC[WOS]:
41
TC[Scopus]:
43
|
Submit date:2019/02/11
Grassmann Manifold
Nonlinear Eigenvalue Problem
Riemannian Newton Algorithm
Stiefel Manifold
A Ulm-like method for inverse eigenvalue problems
Journal article
Shen W.P., Li C., Jin X.Q.. A Ulm-like method for inverse eigenvalue problems[J]. Applied Numerical Mathematics, 2011, 61(3), 356-367.
Authors:
Shen W.P.
;
Li C.
;
Jin X.Q.
Favorite
|
TC[WOS]:
34
TC[Scopus]:
33
|
Submit date:2019/02/11
Inexact Newton-like Method
Inverse Eigenvalue Problem
Nonlinear Equation
Ulm-like Method