UM

Browse/Search Results:  1-10 of 25 Help

Selected(0)Clear Items/Page:    Sort:
Towards the Efficient Calculation of Quantity of Interest from Steady Euler Equations I: A Dual-Consistent DWR-Based h-Adaptive Newton-GMG Solver Journal article
Wang, Jingfeng, Hu, Guanghui. Towards the Efficient Calculation of Quantity of Interest from Steady Euler Equations I: A Dual-Consistent DWR-Based h-Adaptive Newton-GMG Solver[J]. Communications in Computational Physics, 2024, 35(3), 579-608.
Authors:  Wang, Jingfeng;  Hu, Guanghui
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.6/2.9 | Submit date:2024/05/16
Dual Consistency  Dwr-based Adaptation  Finite Volume Method  Hadaptivity  Newton-gmg  Steady Euler Equations  
A Riemannian inexact Newton dogleg method for constructing a symmetric nonnegative matrix with prescribed spectrum Journal article
Zhao, Zhi, Yao, Teng Teng, Bai, Zheng Jian, Jin, Xiao Qing. A Riemannian inexact Newton dogleg method for constructing a symmetric nonnegative matrix with prescribed spectrum[J]. Numerical Algorithms, 2022, 92, 1951–1981.
Authors:  Zhao, Zhi;  Yao, Teng Teng;  Bai, Zheng Jian;  Jin, Xiao Qing
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.7/1.9 | Submit date:2023/01/30
Symmetric Nonnegative Inverse Eigenvalue Problem  Underdetermined Equation  Riemannian Newton Dogleg Method  Preconditioner  
The Riemannian two-step perturbed Gauss–Newton method for least squares inverse eigenvalue problems Journal article
Zhao, Zhi, Jin, Xiao Qing, Yao, Teng Teng. The Riemannian two-step perturbed Gauss–Newton method for least squares inverse eigenvalue problems[J]. Journal of Computational and Applied Mathematics, 2022, 405, 113971.
Authors:  Zhao, Zhi;  Jin, Xiao Qing;  Yao, Teng Teng
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.1/2.1 | Submit date:2022/05/13
Nonlinear Least Squares Problem  Parameterized Least Squares Inverse Eigenvalue Problem  Two-step Perturbed Gauss–newton Method  
An Inverse-Free and Scalable Sparse Bayesian Extreme Learning Machine for Classification Problems Journal article
Luo, Jiahua, Vong, Chi Man, Liu, Zhenbao, Chen, Chuangquan. An Inverse-Free and Scalable Sparse Bayesian Extreme Learning Machine for Classification Problems[J]. IEEE Access, 2021, 9, 87543-87551.
Authors:  Luo, Jiahua;  Vong, Chi Man;  Liu, Zhenbao;  Chen, Chuangquan
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:3.4/3.7 | Submit date:2022/05/13
Inverse-free  Large Classification  Quasi-newton Method  Sparse Bayesian Extreme Learning Machine  Sparse Model  
An Inverse-Free and Scalable Sparse Bayesian Extreme Learning Machine for Classification Problems Journal article
Luo, J.H., Vong, C. M., Liu, Z.B., Chen, C.Q.. An Inverse-Free and Scalable Sparse Bayesian Extreme Learning Machine for Classification Problems[J]. IEEE Acess (SCI-E), 2021, 1-9.
Authors:  Luo, J.H.;  Vong, C. M.;  Liu, Z.B.;  Chen, C.Q.
Favorite |   IF:3.4/3.7 | Submit date:2022/08/09
Inverse-free  quasi-Newton method  sparse Bayesian extreme learning machine  large classification  sparse model  
A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems Journal article
Wen,Chao Tao, Chen,Xiao Shan, Sun,Hai Wei. A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems[J]. Linear Algebra and Its Applications, 2020, 585, 241-262.
Authors:  Wen,Chao Tao;  Chen,Xiao Shan;  Sun,Hai Wei
Favorite | TC[WOS]:9 TC[Scopus]:8  IF:1.0/1.1 | Submit date:2021/03/09
Chebyshev Method  Cubical Convergence  Inexact Newton-like Method  Inverse Eigenvalue Problem  Two-step  
A geometric Gauss–Newton method for least squares inverse eigenvalue problems Journal article
Yao,Teng Teng, Bai,Zheng Jian, Jin,Xiao Qing, Zhao,Zhi. A geometric Gauss–Newton method for least squares inverse eigenvalue problems[J]. BIT Numerical Mathematics, 2020, 60(3), 825-852.
Authors:  Yao,Teng Teng;  Bai,Zheng Jian;  Jin,Xiao Qing;  Zhao,Zhi
Favorite | TC[WOS]:7 TC[Scopus]:8  IF:1.6/1.8 | Submit date:2021/03/09
Geometric Gauss–newton Method  Parameterized Least Squares Inverse Eigenvalue Problem  Preconditioner  
A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems Journal article
Wen, C.T., Chen, X.S., Sun, H. W.. A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems[J]. Linear Algegra and its Applications, 2020, 241-262.
Authors:  Wen, C.T.;  Chen, X.S.;  Sun, H. W.
Favorite | TC[WOS]:9 TC[Scopus]:8  IF:1.0/1.1 | Submit date:2022/07/25
Inverse Eigenvalue Problem  Two-step  Inexact Newton-like Method  Chebyshev Method  Cubical Convergence  
A distributed Newton algorithm for network utility maximization in wireless ad hoc networks Journal article
Pan, Lian, Wang, Hanwu, Jia, Weijia. A distributed Newton algorithm for network utility maximization in wireless ad hoc networks[J]. International Journal of Communication Systems, 2019, 32(15).
Authors:  Pan, Lian;  Wang, Hanwu;  Jia, Weijia
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:1.7/1.7 | Submit date:2022/05/17
Convergence Rate  Iterative Method  Network Utility  Newton Algorithm  Wireless Ad Hoc  
Riemannian inexact Newton method for structured inverse eigenvalue and singular value problems Journal article
Chiang,Chun Yueh, Lin,Matthew M., Jin,Xiao Qing. Riemannian inexact Newton method for structured inverse eigenvalue and singular value problems[J]. BIT Numerical Mathematics, 2019, 59(3), 675-694.
Authors:  Chiang,Chun Yueh;  Lin,Matthew M.;  Jin,Xiao Qing
Favorite | TC[WOS]:3 TC[Scopus]:4  IF:1.6/1.8 | Submit date:2021/03/09
Inverse EigenValue And Singular Value Problems  Nonnegative Matrices  Riemannian Inexact Newton Method