UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
Deep learning-driven evaluation and prediction of ion-doped NASICON materials for enhanced solid-state battery performance Journal article
Zhao, Zirui, Wang, Xiaoke, Wu, Si, Zhou, Pengfei, Zhao, Qian, Xu, Guanping, Sun, Kaitong, Li, Hai Feng. Deep learning-driven evaluation and prediction of ion-doped NASICON materials for enhanced solid-state battery performance[J]. AAPPS Bulletin, 2024, 34(1), 26.
Authors:  Zhao, Zirui;  Wang, Xiaoke;  Wu, Si;  Zhou, Pengfei;  Zhao, Qian; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2024/10/10
Deep Learning Model  Electrochemical Properties  Ion Doping  Nasicon  Solid-state Electrolyte  
Machine learning guided cobalt-doping strategy for solid-state NASICON electrolytes Journal article
Zhou,Pengfei, Zhao,Zirui, Sun,Kaitong, Zhao,Qian, Xiao,Fangyuan, Fu,Ying, Li,Hai Feng. Machine learning guided cobalt-doping strategy for solid-state NASICON electrolytes[J]. European Journal of Inorganic Chemistry, 2023, 26(26), e202300382.
Authors:  Zhou,Pengfei;  Zhao,Zirui;  Sun,Kaitong;  Zhao,Qian;  Xiao,Fangyuan; et al.
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:2.2/2.2 | Submit date:2023/08/03
Cobalt-doping Strategy  Ionic Conductivity  Machine Learning  Nasicon  Solid-state Battery  
MgF2 as an effective additive for improving ionic conductivity of ceramic solid electrolytes Journal article
Pengfei Zhou, Kaitong Sun, Shunping Ji, Zirui Zhao, Ying Fu, Junchao Xia, Si Wu, Yinghao Zhu, Kwun Nam Hui, Hai-Feng Li. MgF2 as an effective additive for improving ionic conductivity of ceramic solid electrolytes[J]. Materials Today Energy, 2023, 32, 101248.
Authors:  Pengfei Zhou;  Kaitong Sun;  Shunping Ji;  Zirui Zhao;  Ying Fu; et al.
Favorite | TC[WOS]:10 TC[Scopus]:12  IF:9.0/8.4 | Submit date:2023/02/07
Solid-state Battery  Solid-state Electrolytes  Nasicon  Ionic Conductivity  Additive