×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [6]
Authors
IU VAI PAN [4]
E GUOKANG [3]
Document Type
Journal article [4]
Conference paper [3]
Date Issued
2020 [1]
2019 [3]
2018 [2]
2017 [1]
Language
英語English [7]
Source Publication
International Jo... [2]
Nonlinear Dynami... [2]
Nonlinear Dynami... [1]
Proceedings of 9... [1]
Proceedings of T... [1]
Indexed By
SCIE [4]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-7 of 7
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
A new method for the frequency response curve and its unstable region of a strongly nonlinear oscillator
Conference paper
Du, H. E., Er, G. K., Iu, V. P.. A new method for the frequency response curve and its unstable region of a strongly nonlinear oscillator[C]. Lacarbonara W., Balachandran B., Ma J., Tenreiro Machado J.A., Stepan G., Gewerbestrasse 11, 6330 Cham, Switzerland:Springer, 2020, 65-74.
Authors:
Du, H. E.
;
Er, G. K.
;
Iu, V. P.
Favorite
|
TC[WOS]:
4
TC[Scopus]:
4
|
Submit date:2022/08/26
Strong Nonlinearity
Multiple-scales Method
Frequency Response
Unstable Region
A Novel Method to Improve the Multiple-Scales Solution of the Forced Nonlinear Oscillators
Journal article
Du,Hai En, Er,Guo Kang, Iu,Vai Pan. A Novel Method to Improve the Multiple-Scales Solution of the Forced Nonlinear Oscillators[J]. International Journal of Computational Methods, 2019, 16(4).
Authors:
Du,Hai En
;
Er,Guo Kang
;
Iu,Vai Pan
Favorite
|
TC[WOS]:
6
TC[Scopus]:
5
IF:
1.4
/
1.3
|
Submit date:2021/03/09
Forced Vibration
Improved Solution
Multiple-scales Method
Perturbation Method
Strong Nonlinearity
Parameter-splitting perturbation method for the improved solutions to strongly nonlinear systems
Journal article
Du, H. E., Er, G. K., Iu, V. P.. Parameter-splitting perturbation method for the improved solutions to strongly nonlinear systems[J]. Nonlinear Dynamics, 2019, 1847-1863.
Authors:
Du, H. E.
;
Er, G. K.
;
Iu, V. P.
Favorite
|
TC[WOS]:
12
TC[Scopus]:
12
|
Submit date:2022/08/26
Nonlinear Oscillator
Parameter Splitting
Multiple-scales Method
Strong Nonlinearity
Optimum Solution
Parameter-splitting perturbation method for the improved solutions to strongly nonlinear systems
Journal article
Du,Hai En, Er,Guo Kang, Iu,Vai Pan. Parameter-splitting perturbation method for the improved solutions to strongly nonlinear systems[J]. Nonlinear Dynamics, 2019, 96, 1847-1863.
Authors:
Du,Hai En
;
Er,Guo Kang
;
Iu,Vai Pan
Favorite
|
TC[WOS]:
12
TC[Scopus]:
12
|
Submit date:2021/03/09
Multiple-scales Method
Nonlinear Oscillator
Optimum Solution
Parameter Splitting
Strong Nonlinearity
A novel method for the forced vibrations of nonlinear oscillators
Conference paper
Du, H. E., Er, G. K., Iu, V. P.. A novel method for the forced vibrations of nonlinear oscillators[C], 2018.
Authors:
Du, H. E.
;
Er, G. K.
;
Iu, V. P.
Favorite
|
|
Submit date:2022/07/14
Perturbation Method
Multiple-scales Method
Strong Nonlinearity
Improved Method
A Novel Method to Improve the Multiple-Scales Solution of the Forced Nonlinear Oscillators
Journal article
Du, H. E., Er, G. K., Iu, V. P.. A Novel Method to Improve the Multiple-Scales Solution of the Forced Nonlinear Oscillators[J]. International Journal of Computational Methods, 2018, 1843010-1-1843010-17.
Authors:
Du, H. E.
;
Er, G. K.
;
Iu, V. P.
Favorite
|
TC[WOS]:
6
TC[Scopus]:
5
|
Submit date:2022/08/26
Perturbation Method
Multiple-scales Method
Strong Nonlinearity
Improvedsolution
Forced Vibration.
Analysis of the forced vibration of geometrically nonlinear cantilever beam with lumping mass by multiple scale Lindstedt-Poincare method
Conference paper
Du, H., Er, G. K., Iu, V. P.. Analysis of the forced vibration of geometrically nonlinear cantilever beam with lumping mass by multiple scale Lindstedt-Poincare method[C], 2017.
Authors:
Du, H.
;
Er, G. K.
;
Iu, V. P.
Favorite
|
|
Submit date:2022/08/26
Forced Vibration
Geometrically Nonlinear Cantilever Beam
Multiple-Scales
Lindstedt-Poincaré Method