UM

Browse/Search Results:  1-10 of 63 Help

Selected(0)Clear Items/Page:    Sort:
A fully value distributional deep reinforcement learning framework for multi-agent cooperation Journal article
Fu, Mingsheng, Huang, Liwei, Li, Fan, Qu, Hong, Xu, Chengzhong. A fully value distributional deep reinforcement learning framework for multi-agent cooperation[J]. Neural Networks, 2025, 184.
Authors:  Fu, Mingsheng;  Huang, Liwei;  Li, Fan;  Qu, Hong;  Xu, Chengzhong
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:6.0/7.9 | Submit date:2025/01/22
Deep Reinforcement Learning  Multi-agent Cooperation  Distributional Reinforcement Learning  Neural Networks  
Team-wise effective communication in multi-agent reinforcement learning Journal article
Yang, Ming, Zhao, Kaiyan, Wang, Yiming, Dong, Renzhi, Du, Yali, Liu, Furui, Zhou, Mingliang, U, Leong Hou. Team-wise effective communication in multi-agent reinforcement learning[J]. Autonomous Agents and Multi-Agent Systems, 2024, 38(2), 36.
Authors:  Yang, Ming;  Zhao, Kaiyan;  Wang, Yiming;  Dong, Renzhi;  Du, Yali; et al.
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:2.0/2.1 | Submit date:2024/08/05
Reinforcement Learning  Multi-agent System  Communication  Cooperation  Competition  
Momentum-Based Multi-Agent Approaches to Distributed Nonconvex Optimization Journal article
Xia, Zicong, Liu, Yang, Kou, Kit Ian, Lu, Jianquan, Gui, Weihua. Momentum-Based Multi-Agent Approaches to Distributed Nonconvex Optimization[J]. IEEE Transactions on Automatic Control, 2024.
Authors:  Xia, Zicong;  Liu, Yang;  Kou, Kit Ian;  Lu, Jianquan;  Gui, Weihua
Favorite | TC[Scopus]:0  IF:6.2/6.6 | Submit date:2025/01/13
Distributed Nonconvex Optimization  Momentum-based Optimization  Multi-agent Systems  
A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data Journal article
Yang, Zhixue, Ren, Zhouyang, Li, Hui, Sun, Zhiyuan, Feng, Jianbing, Xia, Weiyi. A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data[J]. Applied Energy, 2024, 371, 123668.
Authors:  Yang, Zhixue;  Ren, Zhouyang;  Li, Hui;  Sun, Zhiyuan;  Feng, Jianbing; et al.
Favorite | TC[WOS]:21 TC[Scopus]:26  IF:10.1/10.4 | Submit date:2024/07/04
Chance-constrained  Electricity‑hydrogen Integrated Energy Systems  Hydrogen Energy  Multi-agent Deep Reinforcement Learning  Uncertainty  
Multi-Agent DRL-Based Two-Timescale Resource Allocation for Network Slicing in V2X Communications Journal article
Lu, Binbin, Wu, Yuan, Qian, Liping, Zhou, Sheng, Zhang, Haixia, Lu, Rongxing. Multi-Agent DRL-Based Two-Timescale Resource Allocation for Network Slicing in V2X Communications[J]. IEEE Transactions on Network and Service Management, 2024, 21(6), 6744-6758.
Authors:  Lu, Binbin;  Wu, Yuan;  Qian, Liping;  Zhou, Sheng;  Zhang, Haixia; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:4.7/4.6 | Submit date:2025/01/13
Multi-agent Deep Reinforcement Learning  Network Slicing  Resource Allocations  V2x Communications  
Learning-based Autonomous Channel Access in the Presence of Hidden Terminals Journal article
Shao,Yulin, Cai,Yucheng, Wang,Taotao, Guo,Ziyang, Liu,Peng, Luo,Jiajun, Gunduz,Deniz. Learning-based Autonomous Channel Access in the Presence of Hidden Terminals[J]. IEEE Transactions on Mobile Computing, 2024, 23(5), 3680 - 3695.
Authors:  Shao,Yulin;  Cai,Yucheng;  Wang,Taotao;  Guo,Ziyang;  Liu,Peng; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:7.7/6.5 | Submit date:2023/08/03
Hidden Terminal  Multi-agent Deep Reinforcement Learning  Multiple Channel Access  Proximal Policy Optimization  Wi-fi  
TES-CVIDS: A Transmission Efficient Sub-Map Based Collaborative Dense VI-SLAM Framework Journal article
Zhang, Tianjun, Zhang, Lin, Zhang, Fengyi, Zhao, Shengjie, Zhou, Yicong. TES-CVIDS: A Transmission Efficient Sub-Map Based Collaborative Dense VI-SLAM Framework[J]. IEEE Transactions on Intelligent Vehicles, 2024, 1-14.
Authors:  Zhang, Tianjun;  Zhang, Lin;  Zhang, Fengyi;  Zhao, Shengjie;  Zhou, Yicong
Favorite | TC[Scopus]:2  IF:14.0/11.2 | Submit date:2024/05/16
Multi-agent,  Transmission Efficient  Dense Mapping  Visual-inertial Odometry  
Robust collision-free formation control of quadrotor fleets: Trajectory generation and tracking with experimental validation Journal article
Xie, Wei, Yu, Gan, Cabecinhas, David, Silvestre, Carlos, Zhang, Weidong, He, Wei. Robust collision-free formation control of quadrotor fleets: Trajectory generation and tracking with experimental validation[J]. Control Engineering Practice, 2024, 145, 105842.
Authors:  Xie, Wei;  Yu, Gan;  Cabecinhas, David;  Silvestre, Carlos;  Zhang, Weidong; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:5.4/4.5 | Submit date:2024/05/02
Collision Avoidance  Formation Control  Multi-agent  Quadrotor  Robust Control  
H∞ containment control for multi-unmanned aerial vehicle systems: A self-triggered control scheme Journal article
Wang, Shiyi, Cao, Zhiru, Peng, Chen, Zhu, Kaiqun. H∞ containment control for multi-unmanned aerial vehicle systems: A self-triggered control scheme[J]. Journal of the Franklin Institute, 2024, 361(2), 572-582.
Authors:  Wang, Shiyi;  Cao, Zhiru;  Peng, Chen;  Zhu, Kaiqun
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:3.7/3.5 | Submit date:2024/02/22
Multi-agent Systems  Uav Systems  Containment Control  Self-triggered Scheme  
Dynamic Scheduling of Mobile Energy Storage for Post-Disaster Power Recovery from Storm Tides: A Multi-Agent Reinforcement Learning Framework Conference paper
Liu, Fengrui, Lao, Keng Weng, Guo, Haotian, Zhang, Ziyao, Kong, Weiming, Hu, Xiaorui. Dynamic Scheduling of Mobile Energy Storage for Post-Disaster Power Recovery from Storm Tides: A Multi-Agent Reinforcement Learning Framework[C]:IEEE, 2024.
Authors:  Liu, Fengrui;  Lao, Keng Weng;  Guo, Haotian;  Zhang, Ziyao;  Kong, Weiming; et al.
Favorite | TC[Scopus]:0 | Submit date:2024/12/26
Hazard Assessment Framework  Mobile Energy Storage  Multi-agent Reinforcement Learning  Power System Security  Storm Tide