UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
Dynamic behaviors of tapered bi-directional functionally graded beams with various boundary conditions under action of a moving harmonic load Journal article
Yang, y, Kou, K. P., Lam, C. C., Iu, V. P.. Dynamic behaviors of tapered bi-directional functionally graded beams with various boundary conditions under action of a moving harmonic load[J]. Engineering analyhsis with boundary elements, 2019, 225-239.
Authors:  Yang, y;  Kou, K. P.;  Lam, C. C.;  Iu, V. P.
Favorite | TC[WOS]:27 TC[Scopus]:26  IF:4.2/3.3 | Submit date:2022/08/06
Dynamics Response  Moving Harmonic Load  Tapered Bi-directional Fg Beams  Mesh Free  Boundary-domain Integral Equation  
Dynamic behaviors of tapered bi-directional functionally graded beams with various boundary conditions under action of a moving harmonic load Journal article
Yang,Yang, KouPang,Kou, Lam,Chi Chiu, Iu,Vai Pan. Dynamic behaviors of tapered bi-directional functionally graded beams with various boundary conditions under action of a moving harmonic load[J]. Engineering Analysis with Boundary Elements, 2019, 104, 225-239.
Authors:  Yang,Yang;  KouPang,Kou;  Lam,Chi Chiu;  Iu,Vai Pan
Favorite | TC[WOS]:27 TC[Scopus]:26  IF:4.2/3.3 | Submit date:2021/03/09
Boundary-domain Integral Equation  Dynamic Response  Meshfree  Moving Harmonic Load  Tapered Bi-directional Fg Beams  
Geometric phase and non-stationary state Journal article
Qian L., Wu R.-S., Xu H., Yu Y., Pan H., Wang Z.-S.. Geometric phase and non-stationary state[J]. Optik, 2014, 125(17), 4814-4818.
Authors:  Qian L.;  Wu R.-S.;  Xu H.;  Yu Y.;  Pan H.; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:3.100/2.600 | Submit date:2019/04/08
Geometric Phase  Moving Boundary  Non-stationary State  Nonlocality  Potential Barrier