UM

Browse/Search Results:  1-10 of 44 Help

Selected(0)Clear Items/Page:    Sort:
Business Cycles of Casino Cities: Theoretical Model, Empirical Evidence and Policy Implications Journal article
Li Sheng, Xinhua Gu, Haizhen Guo. Business Cycles of Casino Cities: Theoretical Model, Empirical Evidence and Policy Implications[J]. Journal of Urban Affairs, 2023, 45(5), 978 - 997.
Authors:  Li Sheng;  Xinhua Gu;  Haizhen Guo
Favorite | TC[WOS]:1 TC[Scopus]:3  IF:1.9/2.5 | Submit date:2022/06/20
Economic Growth  Markov Chain  Business Cycle  Hospitality Industry  Urban Policy  Las Vegas  Macao  Model  Tourism Market Cycle  Time-series  Transformation  Governance  Travel  City  Demand  Determinants  
Adaptive Transition Probability Matrix Learning for Multiview Spectral Clustering Journal article
Chen, Yongyong, Xiao, Xiaolin, Hua, Zhongyun, Zhou, Yicong. Adaptive Transition Probability Matrix Learning for Multiview Spectral Clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9), 4712-4726.
Authors:  Chen, Yongyong;  Xiao, Xiaolin;  Hua, Zhongyun;  Zhou, Yicong
Favorite | TC[WOS]:49 TC[Scopus]:45  IF:10.2/10.4 | Submit date:2022/05/13
Adaptive Learning  Low-rank Representation (Lrr)  Markov Chain  Multiview Clustering  Spectral Clustering  
Achieving Energy-Efficient Uplink URLLC with MIMO-Aided Grant-Free Access Journal article
Zhao, Linlin, Yang, Shaoshi, Chi, Xuefen, Chen, Wanzhong, Ma, Shaodan. Achieving Energy-Efficient Uplink URLLC with MIMO-Aided Grant-Free Access[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 21(2), 1407-1420.
Authors:  Zhao, Linlin;  Yang, Shaoshi;  Chi, Xuefen;  Chen, Wanzhong;  Ma, Shaodan
Favorite | TC[WOS]:14 TC[Scopus]:15  IF:8.9/8.6 | Submit date:2022/03/04
Absorbing Markov Chain  Energy Efficiency  Grant-free Access  Massive Mimo  Ultra-reliable Low-latency Communications (Urllc)  
SVM-Boosting based on Markov resampling: Theory and algorithm Journal article
Jiang, Hongwei, Zou, Bin, Xu, Chen, Xu, Jie, Tang, Yuan Yan. SVM-Boosting based on Markov resampling: Theory and algorithm[J]. NEURAL NETWORKS, 2020, 131, 276-290.
Authors:  Jiang, Hongwei;  Zou, Bin;  Xu, Chen;  Xu, Jie;  Tang, Yuan Yan
Favorite | TC[WOS]:18 TC[Scopus]:21  IF:6.0/7.9 | Submit date:2021/12/06
Boosting  Consistency  Resampling  Uniformly Ergodic Markov Chain (U.e.m.c.)  
Redundancy allocation of mixed warm and cold standby components in repairable K-out-of-N systems Journal article
Gong, Min, Liu, Hanlin, Peng, Rui. Redundancy allocation of mixed warm and cold standby components in repairable K-out-of-N systems[J]. Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability, 2020, 234(5), 696-707.
Authors:  Gong, Min;  Liu, Hanlin;  Peng, Rui
Favorite | TC[WOS]:7 TC[Scopus]:10  IF:1.7/1.8 | Submit date:2021/12/06
Cold Standby  Warm Standby  Mixed Strategy  Markov Chain  K-out-of-n System  Reliability  
Some characterizations for the CIR model with Markov switching Journal article
Tong, Jinying, Sun, Yaqin, Zhang, Zhenzhong, Zhou, Tiandao, Qin, Zhenjiang. Some characterizations for the CIR model with Markov switching[J]. Stochastics and Dynamics, 2020, 21(4), 2150022.
Authors:  Tong, Jinying;  Sun, Yaqin;  Zhang, Zhenzhong;  Zhou, Tiandao;  Qin, Zhenjiang
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:0.8/1.1 | Submit date:2021/12/08
Covariance Function  Cox-ingersoll-ross (Cir) Model  Markov Chain  
Relaxation methods for solving the tensor equation arising from the higher-order Markov chains Journal article
Liu,Dongdong, Li,Wen, Vong,Seak Weng. Relaxation methods for solving the tensor equation arising from the higher-order Markov chains[J]. Numerical Linear Algebra with Applications, 2019, 26(5).
Authors:  Liu,Dongdong;  Li,Wen;  Vong,Seak Weng
Favorite | TC[WOS]:23 TC[Scopus]:24  IF:1.8/1.8 | Submit date:2021/03/09
Higher-order Markov Chain  Multilinear Pagerank  Relaxation Algorithm  Tensor Equation  
Bayesian model selection for sand with generalization ability evaluation Journal article
Yin‐Fu Jin, Zhen‐Yu Yin, Wan‐Huan Zhou, Jian‐Fu Shao. Bayesian model selection for sand with generalization ability evaluation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(14), 2305-2327.
Authors:  Yin‐Fu Jin;  Zhen‐Yu Yin;  Wan‐Huan Zhou;  Jian‐Fu Shao
Favorite | TC[WOS]:52 TC[Scopus]:54  IF:3.4/3.8 | Submit date:2021/03/11
Bayesian Theory  Constitutive Relation  Critical State  Generalization Ability  Sand  Transitional Markov Chain Monte Carlo  
Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method Journal article
Yin-Fu Jin, Zhen-Yu Yin, Wan-Huan Zhou, Suksun Horpibulsuk. Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method[J]. Acta Geotechnica, 2019, 14(6), 1925-1947.
Authors:  Yin-Fu Jin;  Zhen-Yu Yin;  Wan-Huan Zhou;  Suksun Horpibulsuk
Favorite | TC[WOS]:71 TC[Scopus]:77  IF:5.6/6.0 | Submit date:2021/03/11
Bayesian Parameter Identification  Constitutive Model  Clay  Pressuremeter  Sand  Transitional Markov Chain Monte Carlo  
Learning With Coefficient-Based Regularized Regression on Markov Resampling Journal article
Li, Luoqing, Li, Weifu, Zou, Bin, Wang, Yulong, Tang, Yuan Yan, Han, Hua. Learning With Coefficient-Based Regularized Regression on Markov Resampling[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29(9), 4166-4176.
Authors:  Li, Luoqing;  Li, Weifu;  Zou, Bin;  Wang, Yulong;  Tang, Yuan Yan; et al.
Favorite | TC[WOS]:3 TC[Scopus]:4  IF:10.2/10.4 | Submit date:2018/10/30
Coefficient-based Regularized Regression (Cbrr)  Learning Rate  Markov Resampling  Uniformly Ergodic Markov Chain (U.e.m.c.)