UM

Browse/Search Results:  1-10 of 10 Help

Selected(0)Clear Items/Page:    Sort:
A fast interpretable adaptive meta-learning enhanced deep learning framework for diagnosis of diabetic retinopathy Journal article
Wang, Maofa, Gong, Qizhou, Wan, Quan, Leng, Zhixiong, Xu, Yanlin, Yan, Bingchen, Zhang, He, Huang, Hongliang, Sun, Shaohua. A fast interpretable adaptive meta-learning enhanced deep learning framework for diagnosis of diabetic retinopathy[J]. Expert Systems with Applications, 2024, 244, 123074.
Authors:  Wang, Maofa;  Gong, Qizhou;  Wan, Quan;  Leng, Zhixiong;  Xu, Yanlin; et al.
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:7.5/7.6 | Submit date:2024/05/16
Adaptive Meta-learning  Deep Learning  Few-shot Classification  Interpretability  Logistic Regression  
A multi-layer composite identification scheme of cryptographic algorithm based on hybrid random forest and logistic regression model Journal article
Yuan, Ke, Huang, Yabing, Du, Zhanfei, Li, Jiabao, Jia, Chunfu. A multi-layer composite identification scheme of cryptographic algorithm based on hybrid random forest and logistic regression model[J]. Complex & Intelligent Systems, 2024, 10(1), 1131-1147.
Authors:  Yuan, Ke;  Huang, Yabing;  Du, Zhanfei;  Li, Jiabao;  Jia, Chunfu
Favorite | TC[WOS]:0 TC[Scopus]:2  IF:5.0/5.2 | Submit date:2024/02/22
Cluster Division Identification  Cryptanalysis  Cryptographic Algorithm Identification  Ensemble Learning  Hybrid RAndom Forest And Logistic Regression  Single-layer Identification  
Epidemiological Characteristics of Influenza A and B in Macau, 2010–2018 Journal article
Ng, Hoi Man, Zhang, Teng, Wang, Guoliang, Kan, Si Meng, Ma, Guoyi, Li, Zhe, Chen, Chang, Wang, Dandan, Wong, Meng In, Wong, Chio Hang, Ni, Jinliang, Zhang, Xiaohua Douglas. Epidemiological Characteristics of Influenza A and B in Macau, 2010–2018[J]. VIROLOGICA SINICA, 2021, 36, 1144-1153.
Authors:  Ng, Hoi Man;  Zhang, Teng;  Wang, Guoliang;  Kan, Si Meng;  Ma, Guoyi; et al.
Favorite | TC[WOS]:3 TC[Scopus]:4  IF:4.3/4.3 | Submit date:2022/05/13
Chi-square Test  Epidemiology  Influenza  Logistic Regression  Macau  
High-Pass Difference Features Based Image Quality Assessment 基于高通差异性特征的图像质量评估方法 Journal article
Wang, Rui, Li, Ping, Sheng, Bin, Qiao, Congbin, Ma, Lizhuang, Wu, Enhua. High-Pass Difference Features Based Image Quality Assessment 基于高通差异性特征的图像质量评估方法[J]. Xitong Fangzhen Xuebao / Journal of System Simulation, 2019, 31(2), 227-237.
Authors:  Wang, Rui;  Li, Ping;  Sheng, Bin;  Qiao, Congbin;  Ma, Lizhuang; et al.
Favorite | TC[Scopus]:0 | Submit date:2022/04/15
Image Quality Assessment  Logistic Regression  Natural Scene Statistics  No-reference  
Feature Selection Methods: Case of Filter and Wrapper Approaches for Maximising Classification Accuracy Journal article
Yap Bee Wah, Nurain Ibrahim, Hamzah Abdul Hamid, Shuzlina Abdul-Rahman, Simon Fong. Feature Selection Methods: Case of Filter and Wrapper Approaches for Maximising Classification Accuracy[J]. Pertanika Journal of Science and Technology, 2018, 26(1), 329-340.
Authors:  Yap Bee Wah;  Nurain Ibrahim;  Hamzah Abdul Hamid;  Shuzlina Abdul-Rahman;  Simon Fong
Favorite | TC[WOS]:77 TC[Scopus]:127  IF:0.6/0.6 | Submit date:2019/02/13
Feature Selection Methods  Filter Method  Logistic Regression  Simulation  Wrapper Method  
Comparing weighting methods for non-response in the HKPSSD survey and the BCSPS Journal article
Cai, T., Wang, H.. Comparing weighting methods for non-response in the HKPSSD survey and the BCSPS[J]. CHINESE SOCIOLOGICAL REVIEW, 2017, 1-26.
Authors:  Cai, T.;  Wang, H.
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:2.2/3.8 | Submit date:2022/06/22
Longitudinal Non-response  Weighting Adjustment  Logistic Regression Model  Generalized Exponential Model  Response Propensity Stratification Method  Random Forests Model  
Research note: Using demand determinants to anticipate fluctuations in hotel occupancy Journal article
Tang,Mei Fung Candy, Kulendran,Nada, King,Brian, Yap,Matthew H.T.. Research note: Using demand determinants to anticipate fluctuations in hotel occupancy[J]. Tourism Economics, 2016, 22(1), 179-187.
Authors:  Tang,Mei Fung Candy;  Kulendran,Nada;  King,Brian;  Yap,Matthew H.T.
Favorite | TC[WOS]:2 TC[Scopus]:2 | Submit date:2019/08/01
Hong Kong  Hotel Demand Determinants  Hotel Occupancy Rates  Logistic Regression  Turning Points  
Predicting car purchase intent using data mining approach Conference paper
Yap Bee Wah, Nor Huwaina Ismail, Simon Fong. Predicting car purchase intent using data mining approach[C], 2011, 1994-1999.
Authors:  Yap Bee Wah;  Nor Huwaina Ismail;  Simon Fong
Favorite | TC[Scopus]:6 | Submit date:2019/02/13
Classification  Data Mining  Decision Tree  Logistic Regression  Predictive Modeling  
Credit Scorecard Based on Logistic Regression with Random Coefficients Conference paper
Gang Dong, Kin Keung Lai, Jerome Yen. Credit Scorecard Based on Logistic Regression with Random Coefficients[C], 2010.
Authors:  Gang Dong;  Kin Keung Lai;  Jerome Yen
Favorite | TC[WOS]:31 TC[Scopus]:10 | Submit date:2019/12/11
Bayesian Procedures  Credit Scorecard  Logistic Regression  Random Coefficients  Bayesian Procedures  Credit Scorecard  Logistic Regression  Random Coefficients  
Credit Scorecard Based on Logistic Regression with Random Coefficients Journal article
Gang Dong, Kin Keung Lai, Jerome Yen. Credit Scorecard Based on Logistic Regression with Random Coefficients[J]. Procedia Computer Science, 2010, 1, 2463-2468.
Authors:  Gang Dong;  Kin Keung Lai;  Jerome Yen
Favorite | TC[WOS]:31 TC[Scopus]:10 | Submit date:2019/12/10
Bayesian Procedures  Random Coefficients  Credit Scorecard  Logistic Regression