UM

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
Testing for Equal Average Forecast Accuracy in Possibly Unstable Environments Journal article
Harvey, David I., Leybourne, Stephen J., Zu, Yang. Testing for Equal Average Forecast Accuracy in Possibly Unstable Environments[J]. Journal of Business and Economic Statistics, 2024.
Authors:  Harvey, David I.;  Leybourne, Stephen J.;  Zu, Yang
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.9/4.8 | Submit date:2024/12/26
Average Forecast Accuracy  Diebold-mariano Test  Kernel Smoothing Nonparametric Estimation  Time Varying Loss Differential Mean  
Multi-scale feature fusion kernel estimation with masked interpolation loss for real-world remote sensing images super-resolution Journal article
Wang, Xiaobin, Jiang, Wenzong, Xing, Lei, Shao, Shuai, Liu, Weifeng, Wang, Yanjiang, Cao, Weijia, Liu, Baodi, Zhou, Yicong. Multi-scale feature fusion kernel estimation with masked interpolation loss for real-world remote sensing images super-resolution[J]. International Journal of Remote Sensing, 2023, 44(18), 5597-5627.
Authors:  Wang, Xiaobin;  Jiang, Wenzong;  Xing, Lei;  Shao, Shuai;  Liu, Weifeng; et al.
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:3.0/3.3 | Submit date:2024/02/22
Image Super-resolution  Kernel Estimation  Masked Interpolation Loss  Multi-scale Feature Fusion  Remote Sensing  
CatCharger: Deploying In-Motion Wireless Chargers in a Metropolitan Road Network via Categorization and Clustering of Vehicle Traffic Journal article
Yan, Li, Shen, Haiying, Zhao, Juanjuan, Xu, Chengzhong, Luo, Feng, Qiu, Chenxi, Zhang, Zhe, Mahmud, Shohaib. CatCharger: Deploying In-Motion Wireless Chargers in a Metropolitan Road Network via Categorization and Clustering of Vehicle Traffic[J]. IEEE Internet of Things Journal, 2022, 9(12), 9525-9541.
Authors:  Yan, Li;  Shen, Haiying;  Zhao, Juanjuan;  Xu, Chengzhong;  Luo, Feng; et al.
Favorite | TC[WOS]:3 TC[Scopus]:6  IF:8.2/9.0 | Submit date:2022/08/02
Charger Deployment  Kernel Density Estimation  Mobile Data Analysis  Vehicle Wireless Charging  
DhCM: Dynamic and Hierarchical Event Categorization and Discovery for Social Media Stream Journal article
Guo, Jinjin, Gong, Zhiguo, Cao, Longbing. DhCM: Dynamic and Hierarchical Event Categorization and Discovery for Social Media Stream[J]. ACM Transactions on Intelligent Systems and Technology, 2021, 12(5), 57.
Authors:  Guo, Jinjin;  Gong, Zhiguo;  Cao, Longbing
Favorite | TC[WOS]:1 TC[Scopus]:2  IF:7.2/8.5 | Submit date:2022/05/13
Bayesian Nonparametrics  Document Stream  Event Categorization  Event Discovery  Hierarchical Categorization  Kernel Estimation  Online Inference  
Electrical load forecasting: A deep learning approach based on K-nearest neighbors Journal article
Dong, Yunxuan, Ma, Xuejiao, Fu, Tonglin. Electrical load forecasting: A deep learning approach based on K-nearest neighbors[J]. Applied Soft Computing, 2021, 99, 106900.
Authors:  Dong, Yunxuan;  Ma, Xuejiao;  Fu, Tonglin
Favorite | TC[WOS]:79 TC[Scopus]:97  IF:7.2/7.0 | Submit date:2021/12/07
Deep Learning Approach  Electrical Load Interval Forecasting  K-nearest Neighbors  Kernel Density Estimation  
Distribution preserving learning for unsupervised feature selection Journal article
Ting Xie, Pengfei Ren, Taiping Zhang, Yuan Yan Tang. Distribution preserving learning for unsupervised feature selection[J]. Neurocomputing, 2018, 289, 231-240.
Authors:  Ting Xie;  Pengfei Ren;  Taiping Zhang;  Yuan Yan Tang
Favorite | TC[WOS]:11 TC[Scopus]:12  IF:5.5/5.5 | Submit date:2018/10/30
Feature Selection  Density Preserving  Kernel Density Estimation  Dimensionality Reduction  Data Mining  
Estimation of spot volatility with superposed noisy data Journal article
Liu, Qiang, Liu, Yiqi, Liu, Zhi, Wang, Li. Estimation of spot volatility with superposed noisy data[J]. NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2018, 44, 62-79.
Authors:  Liu, Qiang;  Liu, Yiqi;  Liu, Zhi;  Wang, Li
Favorite | TC[WOS]:4 TC[Scopus]:3  IF:3.8/3.4 | Submit date:2018/10/30
High Frequency Financial Data  Spot Volatility  Range-based Estimation  Kernel Estimate  Multiple Records  Microstructure Noise  Central Limit Theorem  
Learning the distribution of data for embedding Conference paper
Shen Y., Ren P., Zhang T., Tang Y.Y.. Learning the distribution of data for embedding[C], 2017, 46-51.
Authors:  Shen Y.;  Ren P.;  Zhang T.;  Tang Y.Y.
Favorite | TC[WOS]:1 TC[Scopus]:1 | Submit date:2019/02/11
Dimensionality Reduction  Distribution Preserving Embedding  Kernel Density Estimation