×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [5]
Faculty of Busin... [1]
Authors
LIU ZHI [5]
DING YI [1]
Document Type
Journal article [13]
Date Issued
2024 [1]
2023 [1]
2021 [1]
2019 [1]
2014 [3]
2013 [4]
More...
Language
英語English [13]
Source Publication
Communications i... [4]
Applied Mathemat... [2]
Annals of the In... [1]
Communication in... [1]
Communications i... [1]
Econometrics Jou... [1]
More...
Indexed By
SCIE [6]
SSCI [3]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 13
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Estimating spot volatility under infinite variation jumps with dependent market microstructure noise
Journal article
Liu, Qiang, Liu, Zhi. Estimating spot volatility under infinite variation jumps with dependent market microstructure noise[J]. Econometrics Journal, 2024, 27(2), 278-298.
Authors:
Liu, Qiang
;
Liu, Zhi
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
2.9
/
4.8
|
Submit date:2024/07/04
Dependent Market Microstructure Noise
Empirical Characteristic Function
High-frequency Data
Jump Activity
Jumps
Kernel Smoothing
Pre-averaging
Spot Volatility
Stock co-jump networks
Journal article
Yi Ding, Yingying Li, Guoli Liu, Xinghua Zheng. Stock co-jump networks[J]. Journal of Econometrics, 2023, 239(2), 105420.
Authors:
Yi Ding
;
Yingying Li
;
Guoli Liu
;
Xinghua Zheng
Favorite
|
TC[WOS]:
6
TC[Scopus]:
7
IF:
9.9
/
6.7
|
Submit date:2023/08/03
Co-jumps
Community Detection
High-frequency Data
Jumps
Network
Stock Dependence
Jumps at ultra-high frequency: Evidence from the Chinese stock market
Journal article
Chuanhai Zhang, Zhi Liu, Qiang Liu. Jumps at ultra-high frequency: Evidence from the Chinese stock market[J]. Pacific Basin Finance Journal, 2021, 68, 101420.
Authors:
Chuanhai Zhang
;
Zhi Liu
;
Qiang Liu
Favorite
|
TC[WOS]:
2
TC[Scopus]:
3
IF:
4.8
/
4.4
|
Submit date:2021/03/11
Jumps
Market Microstructure Noise
Pre-averaging
Truncated Bi-power Variation
Ultra High Frequency Data
Asymptotic properties of the realized skewness and related statistics
Journal article
Yuta Koike, Zhi Liu. Asymptotic properties of the realized skewness and related statistics[J]. Annals of the Institute of Statistical Mathematics, 2019.
Authors:
Yuta Koike
;
Zhi Liu
Favorite
|
TC[WOS]:
0
TC[Scopus]:
1
IF:
0.8
/
1.0
|
Submit date:2019/06/10
High-frequency Data
Realized Skewness
Stochastic Sampling
Itô Semimartingale
Jumps
Microstructure Noise
On integrated volatility of Itô semimartingales when sampling times are endogenous
Journal article
Li,Cui Xia, Chen,Jin Yuan, Liu,Zhi, Jing,Bing Yi. On integrated volatility of Itô semimartingales when sampling times are endogenous[J]. Communications in Statistics - Theory and Methods, 2014, 43(24), 5263-5275.
Authors:
Li,Cui Xia
;
Chen,Jin Yuan
;
Liu,Zhi
;
Jing,Bing Yi
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
0.6
/
0.8
|
Submit date:2021/03/11
Central Limit Theorem
Endogeneity
High Frequency Data
Ito
Jumps
Semimartingale
On integrated volatility of Itô semimartingales when sampling times are endogenous
Journal article
Li C.-X., Chen J.-Y., Liu Z., Jing B.-Y.. On integrated volatility of Itô semimartingales when sampling times are endogenous[J]. Communications in Statistics - Theory and Methods, 2014, 43(24), 5263-5275.
Authors:
Li C.-X.
;
Chen J.-Y.
;
Liu Z.
;
Jing B.-Y.
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
|
Submit date:2019/02/14
Central Limit Theorem
Endogeneity
High Frequency Data
Ito
Jumps
Semimartingale
On integrated volatility of Ito semimartingales when sampling times are endogenous
Journal article
Li, C. X., Chen, J. Y., Liu, Z., Jing, B. Y.. On integrated volatility of Ito semimartingales when sampling times are endogenous[J]. Communications in Statistics–Theory and Methods, 2014, 5263-5275.
Authors:
Li, C. X.
;
Chen, J. Y.
;
Liu, Z.
;
Jing, B. Y.
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
0.6
/
0.8
|
Submit date:2022/07/27
Ito Semimartingale
High Frequency Data
Central Limit Theorem
Jumps
Endogeneity
On estimating the integrated co-volatility using noisy high-frequency data with jumps
Journal article
Jing,Bing Yi, Li,Cui Xia, Liu,Zhi. On estimating the integrated co-volatility using noisy high-frequency data with jumps[J]. Communications in Statistics - Theory and Methods, 2013, 42(21), 3889-3901.
Authors:
Jing,Bing Yi
;
Li,Cui Xia
;
Liu,Zhi
Favorite
|
TC[WOS]:
5
TC[Scopus]:
6
IF:
0.6
/
0.8
|
Submit date:2021/03/11
Central Limit Theorem
Co-volatility
High-frequency Data
Ito Semi-martingale
Jumps
Microstructure Noise
On estimating the integrated co-volatility using noisy high-frequency data with jumps
Journal article
Jing B.-Y., Li C.-X., Liu Z.. On estimating the integrated co-volatility using noisy high-frequency data with jumps[J]. Communications in Statistics - Theory and Methods, 2013, 42(21), 3889-3901.
Authors:
Jing B.-Y.
;
Li C.-X.
;
Liu Z.
Favorite
|
TC[WOS]:
5
TC[Scopus]:
6
|
Submit date:2019/02/14
Central Limit Theorem
Co-volatility
High-frequency Data
Ito Semi-martingale
Jumps
Microstructure Noise
On estimating the integrated co-volatility using noisy high frequency data with jumps
Journal article
Jing, B. Y., Li, C. X., Liu, Z.. On estimating the integrated co-volatility using noisy high frequency data with jumps[J]. Communication in Statistics-Theory and Methods, 2013, 3889-3901.
Authors:
Jing, B. Y.
;
Li, C. X.
;
Liu, Z.
Favorite
|
TC[WOS]:
5
TC[Scopus]:
6
IF:
0.6
/
0.8
|
Submit date:2022/07/27
Ito Semi-martingale
High Frequency Data
Microstructure Noise
Covolatility
Jumps
Central Limit Theorem