UM

Browse/Search Results:  1-10 of 28 Help

Selected(0)Clear Items/Page:    Sort:
An extended Ulm-like method for inverse singular value problems with multiple and/or zero singular values Journal article
Jinhua Wang, Weiping Shen, Chong Li, Xiaoqing Jin. An extended Ulm-like method for inverse singular value problems with multiple and/or zero singular values[J]. Journal of Computational and Applied Mathematics, 2023, 432, 115261.
Authors:  Jinhua Wang;  Weiping Shen;  Chong Li;  Xiaoqing Jin
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.1/2.1 | Submit date:2023/08/03
Inverse Singular Value Problem  Nonlinear Equation  Ulm-like Method  
A Riemannian inexact Newton dogleg method for constructing a symmetric nonnegative matrix with prescribed spectrum Journal article
Zhao, Zhi, Yao, Teng Teng, Bai, Zheng Jian, Jin, Xiao Qing. A Riemannian inexact Newton dogleg method for constructing a symmetric nonnegative matrix with prescribed spectrum[J]. Numerical Algorithms, 2022, 92, 1951–1981.
Authors:  Zhao, Zhi;  Yao, Teng Teng;  Bai, Zheng Jian;  Jin, Xiao Qing
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.7/1.9 | Submit date:2023/01/30
Symmetric Nonnegative Inverse Eigenvalue Problem  Underdetermined Equation  Riemannian Newton Dogleg Method  Preconditioner  
The Riemannian two-step perturbed Gauss–Newton method for least squares inverse eigenvalue problems Journal article
Zhao, Zhi, Jin, Xiao Qing, Yao, Teng Teng. The Riemannian two-step perturbed Gauss–Newton method for least squares inverse eigenvalue problems[J]. Journal of Computational and Applied Mathematics, 2022, 405, 113971.
Authors:  Zhao, Zhi;  Jin, Xiao Qing;  Yao, Teng Teng
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.1/2.1 | Submit date:2022/05/13
Nonlinear Least Squares Problem  Parameterized Least Squares Inverse Eigenvalue Problem  Two-step Perturbed Gauss–newton Method  
A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems Journal article
Wen,Chao Tao, Chen,Xiao Shan, Sun,Hai Wei. A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems[J]. Linear Algebra and Its Applications, 2020, 585, 241-262.
Authors:  Wen,Chao Tao;  Chen,Xiao Shan;  Sun,Hai Wei
Favorite | TC[WOS]:9 TC[Scopus]:8  IF:1.0/1.1 | Submit date:2021/03/09
Chebyshev Method  Cubical Convergence  Inexact Newton-like Method  Inverse Eigenvalue Problem  Two-step  
A geometric Gauss–Newton method for least squares inverse eigenvalue problems Journal article
Yao,Teng Teng, Bai,Zheng Jian, Jin,Xiao Qing, Zhao,Zhi. A geometric Gauss–Newton method for least squares inverse eigenvalue problems[J]. BIT Numerical Mathematics, 2020, 60(3), 825-852.
Authors:  Yao,Teng Teng;  Bai,Zheng Jian;  Jin,Xiao Qing;  Zhao,Zhi
Favorite | TC[WOS]:7 TC[Scopus]:8  IF:1.6/1.8 | Submit date:2021/03/09
Geometric Gauss–newton Method  Parameterized Least Squares Inverse Eigenvalue Problem  Preconditioner  
A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems Journal article
Wen, C.T., Chen, X.S., Sun, H. W.. A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems[J]. Linear Algegra and its Applications, 2020, 241-262.
Authors:  Wen, C.T.;  Chen, X.S.;  Sun, H. W.
Favorite | TC[WOS]:9 TC[Scopus]:8  IF:1.0/1.1 | Submit date:2022/07/25
Inverse Eigenvalue Problem  Two-step  Inexact Newton-like Method  Chebyshev Method  Cubical Convergence  
Sparse EEG Source Localization Using LAPPS: Least Absolute l-P (0 Journal article
Bore,Joyce Chelangat, Yi,Chanlin, Li,Peiyang, Li,Fali, Harmah,Dennis Joe, Si,Yajing, Guo,Daqing, Yao,Dezhong, Wan,Feng, Xu,Peng. Sparse EEG Source Localization Using LAPPS: Least Absolute l-P (0
Authors:  Bore,Joyce Chelangat;  Yi,Chanlin;  Li,Peiyang;  Li,Fali;  Harmah,Dennis Joe; et al.
Favorite | TC[WOS]:23 TC[Scopus]:30  IF:4.4/4.8 | Submit date:2021/03/11
Eeg Inverse Problem  Ill-posed  Outliers  Sparse Sources  Visual Oddball  
Some recent developments in matrix analysis and computation Conference paper
Jin, X. Q., Vong, S. W., Xie, Z. J., Zhao, Z.. Some recent developments in matrix analysis and computation[C], 2019.
Authors:  Jin, X. Q.;  Vong, S. W.;  Xie, Z. J.;  Zhao, Z.
Favorite |  | Submit date:2022/07/26
Preconditioner  Toeplitz tensor  commutator  norm inequality  stochastic inverse eigenvalue problem  Riemannian optimization  
On the unsolvability of inverse singular value problems almost everywhere Journal article
Chen,Xiao Shan, Sun,Hai Wei. On the unsolvability of inverse singular value problems almost everywhere[J]. Linear and Multilinear Algebra, 2019, 67(5), 987-994.
Authors:  Chen,Xiao Shan;  Sun,Hai Wei
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:0.9/1.0 | Submit date:2019/05/27
Inverse Singular Value Problem  Unsolvability  Zero Singular Value  
TWO-STEP NEWTON TYPE METHODS FOR SOLVING INVERSE EIGENVALUE PROBLEMS Journal article
Chen, X.S., Wen, C.T., Sun, H. W.. TWO-STEP NEWTON TYPE METHODS FOR SOLVING INVERSE EIGENVALUE PROBLEMS[J]. Numerical Linear Algebra with Applications, 2018, e.2185-2185.
Authors:  Chen, X.S.;  Wen, C.T.;  Sun, H. W.
Favorite | TC[WOS]:10 TC[Scopus]:10 | Submit date:2022/07/25
Inverse Eigenvalue Problem  Two-step Newton Type Method  Super Quadratically Convergent