×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [4]
Authors
KOU KIT IAN [3]
Document Type
Journal article [10]
Conference paper [1]
Date Issued
2018 [2]
2017 [1]
2016 [1]
2014 [4]
2013 [2]
2012 [1]
More...
Language
英語English [11]
Source Publication
Journal of Diffe... [5]
Complex Variable... [2]
COMPLEX ANALYSIS... [1]
Complex Analysis... [1]
International Jo... [1]
MATHEMATICAL MET... [1]
More...
Indexed By
SCIE [9]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 11
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Fourier Spectrum Characterizations of Hp Spaces on Tubes Over Cones for 1 ≤ p≤ ∞
Journal article
Hai-Chou Li, Guan-Tie Deng, Tao Qian. Fourier Spectrum Characterizations of Hp Spaces on Tubes Over Cones for 1 ≤ p≤ ∞[J]. Complex Analysis and Operator Theory, 2018, 12(5), 1193-1218.
Authors:
Hai-Chou Li
;
Guan-Tie Deng
;
Tao Qian
Favorite
|
TC[WOS]:
7
TC[Scopus]:
9
|
Submit date:2019/02/11
Fourier Spectrum
Fourier Transform
Hardy Spaces
Integral Representation
Tube Domain
Fourier Spectrum Characterizations of H-p Spaces on Tubes Over Cones for 1 <= p <= infinity
Journal article
Li, Hai-Chou, Deng, Guan-Tie, Qian, Tao. Fourier Spectrum Characterizations of H-p Spaces on Tubes Over Cones for 1 <= p <= infinity[J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12(5), 1193-1218.
Authors:
Li, Hai-Chou
;
Deng, Guan-Tie
;
Qian, Tao
Favorite
|
TC[WOS]:
7
TC[Scopus]:
9
IF:
0.7
/
0.8
|
Submit date:2018/10/30
Hardy Spaces
Fourier Transform
Tube Domain
Fourier Spectrum
Integral Representation
Integral representation and estimation of harmonic functions in the quaternionic half space
Journal article
Zhang, Yan Hui, Kou, Kit Ian. Integral representation and estimation of harmonic functions in the quaternionic half space[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40(15), 5484-5489.
Authors:
Zhang, Yan Hui
;
Kou, Kit Ian
Favorite
|
TC[WOS]:
1
TC[Scopus]:
1
IF:
2.1
/
2.0
|
Submit date:2018/10/30
Integral Representation
Dirichlet Problem
Lower Bound
Integral representations of a class of harmonic functions in the half space
Journal article
Yan Hui Zhang, Guan Tie Deng, Tao Qian. Integral representations of a class of harmonic functions in the half space[J]. Journal of Differential Equations, 2016, 260(2), 923-936.
Authors:
Yan Hui Zhang
;
Guan Tie Deng
;
Tao Qian
Favorite
|
TC[WOS]:
6
TC[Scopus]:
8
|
Submit date:2019/02/11
Integral Representation
Modified Poisson Kernel
Positive Part
Integral representation and asymptotic behavior of harmonic functions in half space
Journal article
Zhang Y.H., Kou K.I., Deng G.T.. Integral representation and asymptotic behavior of harmonic functions in half space[J]. Journal of Differential Equations, 2014, 257(8), 2753-2764.
Authors:
Zhang Y.H.
;
Kou K.I.
;
Deng G.T.
Favorite
|
TC[WOS]:
6
TC[Scopus]:
8
|
Submit date:2019/02/13
Carleman's Formula
Growth
Integral Representation
Nevanlinna's Representation
Integral representation and asymptotic behavior ofharmonic functions in half space
Journal article
Zhang, Y.H., Kou, K. I., Deng, G.T.. Integral representation and asymptotic behavior ofharmonic functions in half space[J]. Journal of Differential Equations, 2014, 2753-2764.
Authors:
Zhang, Y.H.
;
Kou, K. I.
;
Deng, G.T.
Favorite
|
IF:
2.4
/
2.6
|
Submit date:2022/08/24
Carleman’s formula
Nevanlinna’s representation
Integral representation
Growth
Image Transform Based on Integral Equation-Wavelet Approach
Conference paper
Yuan Yan Tang, Lina Yang, Hong Li. Image Transform Based on Integral Equation-Wavelet Approach[C]. World Academy of Science, Engineering and Technology, 2014.
Authors:
Yuan Yan Tang
;
Lina Yang
;
Hong Li
Favorite
|
|
Submit date:2019/04/30
Harmonic Model
Partial Differential Equation (Pde)
Integral Equation
Integral Representation
Boundary Measure Formula
Wavelet Collocation
Lp polyharmonic Dirichlet problems in regular domains III: The unit ball
Journal article
Du Z., Qian T., Wang J.. Lp polyharmonic Dirichlet problems in regular domains III: The unit ball[J]. Complex Variables and Elliptic Equations, 2014, 59(7), 947-965.
Authors:
Du Z.
;
Qian T.
;
Wang J.
Favorite
|
TC[WOS]:
8
TC[Scopus]:
8
|
Submit date:2019/02/11
Dirichlet Problems
Higher Order Poisson Kernels
Integral Representation
Polyharmonic Functions
Lp Polyharmonic Dirichlet problems in regular domains I: The unit disc
Journal article
Du Z., Ian Kou K., Wang J.. Lp Polyharmonic Dirichlet problems in regular domains I: The unit disc[J]. Complex Variables and Elliptic Equations, 2013, 58(10), 1387-1405.
Authors:
Du Z.
;
Ian Kou K.
;
Wang J.
Favorite
|
TC[WOS]:
6
TC[Scopus]:
6
|
Submit date:2019/02/13
Polyharmonic Functions
Dirichlet Problems
Higher Order Poisson Kernels
Integral Representation
Lp polyharmonic Dirichlet problems in regular domains IV: The upper-half space
Journal article
Du Z., Qian T., Wang J.. Lp polyharmonic Dirichlet problems in regular domains IV: The upper-half space[J]. Journal of Differential Equations, 2013, 255(5), 779-795.
Authors:
Du Z.
;
Qian T.
;
Wang J.
Favorite
|
TC[WOS]:
4
TC[Scopus]:
4
|
Submit date:2019/02/11
Dirichlet Problems
Higher Order Poisson Kernels
Integral Representation
Polyharmonic Functions