×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [3]
Authors
KOU KIT IAN [2]
Document Type
Journal article [9]
Date Issued
2015 [4]
2014 [1]
2013 [1]
2012 [1]
2011 [2]
Language
英語English [9]
Source Publication
Mathematical Met... [3]
IEEE Transaction... [1]
International Jo... [1]
Journal of Fouri... [1]
Journal of Moder... [1]
Nonlinear Analys... [1]
More...
Indexed By
SCIE [8]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-9 of 9
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Signal Mornents for the short-Time Fourier Transform Associated with Hardy-Sobolev Derivatives
Journal article
Liu, M., Kou, K. I., Morais, J., Dang, P.. Signal Mornents for the short-Time Fourier Transform Associated with Hardy-Sobolev Derivatives[J]. mathematical Methods in the Applied Sciences, 2015, 2719-2730.
Authors:
Liu, M.
;
Kou, K. I.
;
Morais, J.
;
Dang, P.
Favorite
|
IF:
0.6
/
0.5
|
Submit date:2022/08/27
Short-time Fourier Transform
Hilbert Transform
Hardy–sobolev Space
Amplitude-phase Representation Of Signal
Instantaneous Frequency
Signal Moment
Signal moments for the short-time Fourier transform associated with Hardy-Sobolev derivatives
Journal article
Liu M., Kou K.I., Morais J., Dang P.. Signal moments for the short-time Fourier transform associated with Hardy-Sobolev derivatives[J]. Mathematical Methods in the Applied Sciences, 2015, 38(13), 2719-2730.
Authors:
Liu M.
;
Kou K.I.
;
Morais J.
;
Dang P.
Favorite
|
TC[WOS]:
4
TC[Scopus]:
4
|
Submit date:2019/02/13
Amplitude-phase Representation Of Signal
Hardy-sobolev Space
Hilbert Transform
Instantaneous Frequency
Short-time Fourier Transform
Signal Moment
Signal moments for the short-time Fourier transform associated with Hardy-Sobolev derivatives
Journal article
Liu,M., Kou,K. I., Morais,J., Dang,P.. Signal moments for the short-time Fourier transform associated with Hardy-Sobolev derivatives[J]. Mathematical Methods in the Applied Sciences, 2015, 38(13), 2719-2730.
Authors:
Liu,M.
;
Kou,K. I.
;
Morais,J.
;
Dang,P.
Favorite
|
TC[WOS]:
4
TC[Scopus]:
4
IF:
2.1
/
2.0
|
Submit date:2021/03/11
Amplitude-phase Representation Of Signal
Hardy-sobolev Space
Hilbert Transform
Instantaneous Frequency
Short-time Fourier Transform
Signal Moment
Sharper uncertainty principles for the windowed Fourier transform
Journal article
Liu M.-S., Kou K.I., Morais J., Dang P.. Sharper uncertainty principles for the windowed Fourier transform[J]. Journal of Modern Optics, 2015, 62(1), 46-55.
Authors:
Liu M.-S.
;
Kou K.I.
;
Morais J.
;
Dang P.
Favorite
|
TC[WOS]:
7
TC[Scopus]:
8
|
Submit date:2019/02/13
Amplitude-phase Representation Of Signal
Hardy-sobolev Space
Heisenberg's Uncertainty Principle
Instantaneous Frequency
Signal Moment
Windowed Fourier Transform
Unbounded holomorphic Fourier multipliers on starlike Lipschitz surfaces and applications to Sobolev spaces
Journal article
Li P., Qian T.. Unbounded holomorphic Fourier multipliers on starlike Lipschitz surfaces and applications to Sobolev spaces[J]. Nonlinear Analysis, Theory, Methods and Applications, 2014, 95, 436-449.
Authors:
Li P.
;
Qian T.
Favorite
|
TC[WOS]:
0
TC[Scopus]:
1
|
Submit date:2019/02/11
Fourier Multiplier
Hardy-sobolev Spaces
Quaternionic Space
Singular Integral
Starlike Lipschitz Surface
Transient time-frequency distribution based on mono-component decompositions
Journal article
Dang P., Qian T., Guo Y.Y.. Transient time-frequency distribution based on mono-component decompositions[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2013, 11(3).
Authors:
Dang P.
;
Qian T.
;
Guo Y.Y.
Favorite
|
TC[WOS]:
18
TC[Scopus]:
20
IF:
0.9
/
1.1
|
Submit date:2019/02/11
Time-frequency Distribution Of Signal
Hilbert Transform
Analytic Signal
Hardy Space
Hardy-sobolev Space
Instantaneous Frequency
Analytic Phase Derivaive
Hardy–Sobolev derivatives of phase andamplitude, and their applications
Journal article
Pei Dang, Tao Qian, Yan Yang. Hardy–Sobolev derivatives of phase andamplitude, and their applications[J]. Mathematical Methods in the Applied Sciences, 2012, 35(17), 2017–2030.
Authors:
Pei Dang
;
Tao Qian
;
Yan Yang
Favorite
|
TC[WOS]:
14
TC[Scopus]:
14
|
Submit date:2019/06/17
Amplitude-phase Representation Of Signal
Derivatives Of Phase Andamplitude
Sobolev Space
Hardy Space
Hilbert Transform
Instantaneous Frequency
Analytic phase derivatives, all-pass filters and signals of minimum phase
Journal article
Dang P., Qian T.. Analytic phase derivatives, all-pass filters and signals of minimum phase[J]. IEEE Transactions on Signal Processing, 2011, 59(10), 4708.
Authors:
Dang P.
;
Qian T.
Favorite
|
TC[WOS]:
29
TC[Scopus]:
33
|
Submit date:2018/10/30
All-pass Filter
Amplitude-phase Representation Of Signal
Analytic Signal
Blaschke Product
Hardy Space
Hardy-sobolev Space
Hilbert Transform
Inner Function
Instantaneous Frequency
Minimum Phase Signal
Outer Function
Hardy-Sobolev Spaces Decomposition in Signal Analysis
Journal article
Dang P., Qian T., You Z.. Hardy-Sobolev Spaces Decomposition in Signal Analysis[J]. Journal of Fourier Analysis and Applications, 2011, 17(1), 36.
Authors:
Dang P.
;
Qian T.
;
You Z.
Favorite
|
TC[WOS]:
32
TC[Scopus]:
33
|
Submit date:2018/10/30
Amplitude-phase Representation Of Signal
Covariance
Hardy Space
Hardy-sobolev Space
Hilbert Transform
Mean Of Frequency
Mean Of Time
Phase Derivative
Sobolev Space
Uncertainty Principle