UM

Browse/Search Results:  1-10 of 11 Help

Selected(0)Clear Items/Page:    Sort:
The smallest eigenvalue of the Hankel matrices associated with a perturbed Jacobi weight Journal article
Wang, Yuxi, Chen, Yang. The smallest eigenvalue of the Hankel matrices associated with a perturbed Jacobi weight[J]. Applied Mathematics and Computation, 2024, 474, 128615.
Authors:  Wang, Yuxi;  Chen, Yang
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:3.5/3.1 | Submit date:2024/05/16
Asymptotics  Hankel Matrices  Orthogonal Polynomials  Smallest Eigenvalue  
THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SEMICLASSICAL LAGUERRE WEIGHT Journal article
Wang, Dan, Zhu, Mengkun, Chen, Yang. THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SEMICLASSICAL LAGUERRE WEIGHT[J]. Mathematical Inequalities and Applications, 2024, 27(1), 53-62.
Authors:  Wang, Dan;  Zhu, Mengkun;  Chen, Yang
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:0.9/0.8 | Submit date:2024/05/16
Asymptotics  Hankel Matrices  Polynomials  Smallest Eigenvalue  
THE SMALLEST EIGENVALUE OF THE ILL-CONDITIONED HANKEL MATRICES ASSOCIATED WITH A SEMI-CLASSICAL HERMITE WEIGHT Journal article
Wang, Yuxi, Zhu, Mengkun, Chen, Yang. THE SMALLEST EIGENVALUE OF THE ILL-CONDITIONED HANKEL MATRICES ASSOCIATED WITH A SEMI-CLASSICAL HERMITE WEIGHT[J]. Proceedings of the American Mathematical Society, 2023, 151(12), 5345-5352.
Authors:  Wang, Yuxi;  Zhu, Mengkun;  Chen, Yang
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:0.8/0.8 | Submit date:2024/01/02
Hankel Matrices  Orthogonal Polynomials  Smallest Eigenvalue  
THE SMALLEST EIGENVALUE of LARGE HANKEL MATRICES ASSOCIATED with A SINGULARLY PERTURBED GAUSSIAN WEIGHT Journal article
Wang, Dan, Zhu, Mengkun, Chen, Yang. THE SMALLEST EIGENVALUE of LARGE HANKEL MATRICES ASSOCIATED with A SINGULARLY PERTURBED GAUSSIAN WEIGHT[J]. Proceedings of the American Mathematical Society, 2022, 150(1), 153-160.
Authors:  Wang, Dan;  Zhu, Mengkun;  Chen, Yang
Favorite | TC[WOS]:5 TC[Scopus]:4  IF:0.8/0.8 | Submit date:2022/05/17
Asymptotics  Hankel Matrices  Orthogonal Polynomials  Smallest Eigenvalue  
Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation Journal article
Chen,Yang, Sikorowski,J., Zhu,Mengkun. Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation[J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 363, 124628.
Authors:  Chen,Yang;  Sikorowski,J.;  Zhu,Mengkun
Favorite | TC[WOS]:7 TC[Scopus]:5  IF:3.5/3.1 | Submit date:2021/03/09
Extremely Ill-conditioned Hankel Matrices  Parallel Eigensolver  Random Matrix  Smallest Eigenvalue  
Smallest eigenvalues of large Hankel Matrices at critical point: Comparing conjecture with parallelised computation Journal article
Chen, Y., Sikorowski, J., Zhu, M.. Smallest eigenvalues of large Hankel Matrices at critical point: Comparing conjecture with parallelised computation[J]. Applied Mathematics and Computation, 2019, 124628-124646.
Authors:  Chen, Y.;  Sikorowski, J.;  Zhu, M.
Favorite | TC[WOS]:7 TC[Scopus]:5  IF:3.5/3.1 | Submit date:2022/06/27
Hankel Matrices  Smallest Eigenvlues  Parallelised Computations.  
Painlevé transcendents and the Hankel determinants generated by a discontinuous Gaussian weight Journal article
Min, Chao, Chen, Yang. Painlevé transcendents and the Hankel determinants generated by a discontinuous Gaussian weight[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42(1), 301-321.
Authors:  Min, Chao;  Chen, Yang
Favorite | TC[WOS]:18 TC[Scopus]:16  IF:2.1/2.0 | Submit date:2019/01/17
Asymptotics  Hankel Determinants  Ladder Operators  Orthogonal Polynomials  Painleve Transcendents  Random Matrices  
On properties of a deformed Freud weight Journal article
Zhu, Mengkun, Chen, Yang. On properties of a deformed Freud weight[J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2019, 8(1).
Authors:  Zhu, Mengkun;  Chen, Yang
Favorite | TC[WOS]:14 TC[Scopus]:11  IF:0.9/0.9 | Submit date:2019/01/17
Deformed Freud Weight  Unitary Random Matrices  Hankel Determinant  Discrete And Continuous Painleve Equation  Integrable Systems  
The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight Journal article
Mengkun Zhu, Niall Emmart, Yang Chen, Charles Weems. The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42(9), 3272-3288.
Authors:  Mengkun Zhu;  Niall Emmart;  Yang Chen;  Charles Weems
Favorite | TC[WOS]:7 TC[Scopus]:7  IF:2.1/2.0 | Submit date:2019/05/31
Asymptotics  Hankel Matrices  Random Matrix  Smallest Eigenvalue  Orthogonal Polynomials  
The smallest eigenvalue of large Hankel matrices Journal article
Zhu, Mengkun, Chen, Yang, Emmart, Niall, Weems, Charles. The smallest eigenvalue of large Hankel matrices[J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 334, 375-387.
Authors:  Zhu, Mengkun;  Chen, Yang;  Emmart, Niall;  Weems, Charles
Favorite | TC[WOS]:8 TC[Scopus]:9  IF:3.5/3.1 | Submit date:2018/10/30
Asymptotics  Smallest Eigenvalue  Hankel Matrices  Orthogonal Polynomials  Parallel Algorithm