×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scie... [11]
Authors
CHEN YANG [8]
Document Type
Journal article [11]
Date Issued
2024 [2]
2023 [1]
2022 [1]
2019 [5]
2018 [1]
2015 [1]
More...
Language
英語English [10]
Source Publication
APPLIED MATHEMAT... [2]
Applied Mathemat... [2]
MATHEMATICAL MET... [2]
Proceedings of t... [2]
Communications i... [1]
Mathematical Ine... [1]
More...
Indexed By
SCIE [9]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 11
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
The smallest eigenvalue of the Hankel matrices associated with a perturbed Jacobi weight
Journal article
Wang, Yuxi, Chen, Yang. The smallest eigenvalue of the Hankel matrices associated with a perturbed Jacobi weight[J]. Applied Mathematics and Computation, 2024, 474, 128615.
Authors:
Wang, Yuxi
;
Chen, Yang
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
3.5
/
3.1
|
Submit date:2024/05/16
Asymptotics
Hankel Matrices
Orthogonal Polynomials
Smallest Eigenvalue
THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SEMICLASSICAL LAGUERRE WEIGHT
Journal article
Wang, Dan, Zhu, Mengkun, Chen, Yang. THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SEMICLASSICAL LAGUERRE WEIGHT[J]. Mathematical Inequalities and Applications, 2024, 27(1), 53-62.
Authors:
Wang, Dan
;
Zhu, Mengkun
;
Chen, Yang
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
0.9
/
0.8
|
Submit date:2024/05/16
Asymptotics
Hankel Matrices
Polynomials
Smallest Eigenvalue
THE SMALLEST EIGENVALUE OF THE ILL-CONDITIONED HANKEL MATRICES ASSOCIATED WITH A SEMI-CLASSICAL HERMITE WEIGHT
Journal article
Wang, Yuxi, Zhu, Mengkun, Chen, Yang. THE SMALLEST EIGENVALUE OF THE ILL-CONDITIONED HANKEL MATRICES ASSOCIATED WITH A SEMI-CLASSICAL HERMITE WEIGHT[J]. Proceedings of the American Mathematical Society, 2023, 151(12), 5345-5352.
Authors:
Wang, Yuxi
;
Zhu, Mengkun
;
Chen, Yang
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
0.8
/
0.8
|
Submit date:2024/01/02
Hankel Matrices
Orthogonal Polynomials
Smallest Eigenvalue
THE SMALLEST EIGENVALUE of LARGE HANKEL MATRICES ASSOCIATED with A SINGULARLY PERTURBED GAUSSIAN WEIGHT
Journal article
Wang, Dan, Zhu, Mengkun, Chen, Yang. THE SMALLEST EIGENVALUE of LARGE HANKEL MATRICES ASSOCIATED with A SINGULARLY PERTURBED GAUSSIAN WEIGHT[J]. Proceedings of the American Mathematical Society, 2022, 150(1), 153-160.
Authors:
Wang, Dan
;
Zhu, Mengkun
;
Chen, Yang
Favorite
|
TC[WOS]:
5
TC[Scopus]:
4
IF:
0.8
/
0.8
|
Submit date:2022/05/17
Asymptotics
Hankel Matrices
Orthogonal Polynomials
Smallest Eigenvalue
Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation
Journal article
Chen,Yang, Sikorowski,J., Zhu,Mengkun. Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation[J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 363, 124628.
Authors:
Chen,Yang
;
Sikorowski,J.
;
Zhu,Mengkun
Favorite
|
TC[WOS]:
7
TC[Scopus]:
5
IF:
3.5
/
3.1
|
Submit date:2021/03/09
Extremely Ill-conditioned Hankel Matrices
Parallel Eigensolver
Random Matrix
Smallest Eigenvalue
Smallest eigenvalues of large Hankel Matrices at critical point: Comparing conjecture with parallelised computation
Journal article
Chen, Y., Sikorowski, J., Zhu, M.. Smallest eigenvalues of large Hankel Matrices at critical point: Comparing conjecture with parallelised computation[J]. Applied Mathematics and Computation, 2019, 124628-124646.
Authors:
Chen, Y.
;
Sikorowski, J.
;
Zhu, M.
Favorite
|
TC[WOS]:
7
TC[Scopus]:
5
IF:
3.5
/
3.1
|
Submit date:2022/06/27
Hankel Matrices
Smallest Eigenvlues
Parallelised Computations.
Painlevé transcendents and the Hankel determinants generated by a discontinuous Gaussian weight
Journal article
Min, Chao, Chen, Yang. Painlevé transcendents and the Hankel determinants generated by a discontinuous Gaussian weight[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42(1), 301-321.
Authors:
Min, Chao
;
Chen, Yang
Favorite
|
TC[WOS]:
18
TC[Scopus]:
16
IF:
2.1
/
2.0
|
Submit date:2019/01/17
Asymptotics
Hankel Determinants
Ladder Operators
Orthogonal Polynomials
Painleve Transcendents
Random Matrices
On properties of a deformed Freud weight
Journal article
Zhu, Mengkun, Chen, Yang. On properties of a deformed Freud weight[J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2019, 8(1).
Authors:
Zhu, Mengkun
;
Chen, Yang
Favorite
|
TC[WOS]:
14
TC[Scopus]:
11
IF:
0.9
/
0.9
|
Submit date:2019/01/17
Deformed Freud Weight
Unitary Random Matrices
Hankel Determinant
Discrete And Continuous Painleve Equation
Integrable Systems
The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight
Journal article
Mengkun Zhu, Niall Emmart, Yang Chen, Charles Weems. The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42(9), 3272-3288.
Authors:
Mengkun Zhu
;
Niall Emmart
;
Yang Chen
;
Charles Weems
Favorite
|
TC[WOS]:
7
TC[Scopus]:
7
IF:
2.1
/
2.0
|
Submit date:2019/05/31
Asymptotics
Hankel Matrices
Random Matrix
Smallest Eigenvalue
Orthogonal Polynomials
The smallest eigenvalue of large Hankel matrices
Journal article
Zhu, Mengkun, Chen, Yang, Emmart, Niall, Weems, Charles. The smallest eigenvalue of large Hankel matrices[J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 334, 375-387.
Authors:
Zhu, Mengkun
;
Chen, Yang
;
Emmart, Niall
;
Weems, Charles
Favorite
|
TC[WOS]:
8
TC[Scopus]:
9
IF:
3.5
/
3.1
|
Submit date:2018/10/30
Asymptotics
Smallest Eigenvalue
Hankel Matrices
Orthogonal Polynomials
Parallel Algorithm