UM

Browse/Search Results:  1-10 of 15 Help

Selected(0)Clear Items/Page:    Sort:
Learning-based stabilization of Markov jump linear systems Journal article
Liu, Jason J.R., Ogura, Masaki, Li, Qiyu, Lam, James. Learning-based stabilization of Markov jump linear systems[J]. Neurocomputing, 2024, 586, 127618.
Authors:  Liu, Jason J.R.;  Ogura, Masaki;  Li, Qiyu;  Lam, James
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:5.5/5.5 | Submit date:2024/05/16
Markov Jump Linear Systems  Stabilization  Stochastic Gradient Descent  Stochastic Systems  
A probability approximation framework: Markov process approach Journal article
Chen, Peng, Shao, Qi Man, Xu, Lihu. A probability approximation framework: Markov process approach[J]. Annals of Applied Probability, 2023, 33(2), 1619-1659.
Authors:  Chen, Peng;  Shao, Qi Man;  Xu, Lihu
Favorite | TC[WOS]:1 TC[Scopus]:0  IF:1.4/1.9 | Submit date:2023/05/02
Euler–maruyama (Em) Discretization  Itô’s Formula  Markov Process  Normal Approximation  Online Stochastic Gradient Descent  Probability Approximation  Stable Process  Stochastic Differential Equation  Wasserstein-1 Distance  
Online Identification of Nonlinear Systems With Separable Structure Journal article
Chen, Guang Yong, Gan, Min, Chen, Long, Chen, C. L.P.. Online Identification of Nonlinear Systems With Separable Structure[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 35(6), 8695-8701.
Authors:  Chen, Guang Yong;  Gan, Min;  Chen, Long;  Chen, C. L.P.
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:10.2/10.4 | Submit date:2023/01/30
Feedforward Neural Networks (Fnns)  Separable Nonlinear Models (Snlms)  Stochastic Gradient Descent (Sgd) Method  Variable Projection (Vp) Method  
Accelerating variable projection algorithm by Aitken technique Conference paper
Min Xu, Fenggen Lin, Guangyong Chen, Min Gan. Accelerating variable projection algorithm by Aitken technique[C]:IEEE, 2021, 596-600.
Authors:  Min Xu;  Fenggen Lin;  Guangyong Chen;  Min Gan
Favorite | TC[Scopus]:0 | Submit date:2021/12/08
Aitken Acceleration Technique  Gradient Descent Algorithm (Gd)  Separable Nonlinear Models (Snlms)  System Identification  Variable Projection (Vp)  
OPTool—An optimization toolbox for iterative algorithms Journal article
Silvestre, Daniel. OPTool—An optimization toolbox for iterative algorithms[J]. SoftwareX, 2019, 11, 100371.
Authors:  Silvestre, Daniel
Favorite | TC[WOS]:8 TC[Scopus]:7  IF:2.4/3.1 | Submit date:2021/12/03
Optimization Problems  Control-theoretical Formalization  Gradient-descent-like Algorithms  
Nonlinear system identification using a simplified Fuzzy Broad Learning System: Stability analysis and a comparative study Journal article
Feng,Shuang, Chen,C. L.Philip. Nonlinear system identification using a simplified Fuzzy Broad Learning System: Stability analysis and a comparative study[J]. Neurocomputing, 2019, 337, 274-286.
Authors:  Feng,Shuang;  Chen,C. L.Philip
Favorite | TC[WOS]:25 TC[Scopus]:30  IF:5.5/5.5 | Submit date:2021/03/09
Fuzzy Bls  Fuzzy C-means  Gradient Descent  Lyapunov Stability  Nonlinear System Identification  
Broad Learning System for Control of Nonlinear Dynamic Systems Conference paper
Feng,Shuang, Chen,C. L.Philip. Broad Learning System for Control of Nonlinear Dynamic Systems[C], 2019, 2230-2235.
Authors:  Feng,Shuang;  Chen,C. L.Philip
Favorite | TC[WOS]:22 TC[Scopus]:28 | Submit date:2021/03/09
Broad Learning System  Control  Gradient Descent  Nonlinear System  
Fuzzy Neural Networks (FNNs) Training Algorithm with Dropout via Its Equivalent Fully Connected Fuzzy Inference Systems (F-CONFIS) Conference paper
Wang,Jing, Chen,Philip, Ma,Zhenyuan, Xiao,Zhenghong. Fuzzy Neural Networks (FNNs) Training Algorithm with Dropout via Its Equivalent Fully Connected Fuzzy Inference Systems (F-CONFIS)[C], 2018, 80-84.
Authors:  Wang,Jing;  Chen,Philip;  Ma,Zhenyuan;  Xiao,Zhenghong
Favorite | TC[Scopus]:2 | Submit date:2021/03/09
Adaptive Neural-Fuzzy Inference Systems(ANFIS)  Fuzzy Inference Systems  Fuzzy Neural Networks  Gradient Descent  Neural Networks  
A new fast-F-CONFIS training of fully-connected neuro-fuzzy inference system Conference paper
Jing Wang, Yuan-Yan Tang, Long Chen, C. L. Philip Chen, Chao-Tian Chen. A new fast-F-CONFIS training of fully-connected neuro-fuzzy inference system[C]:IEEE, 2015, 99-104.
Authors:  Jing Wang;  Yuan-Yan Tang;  Long Chen;  C. L. Philip Chen;  Chao-Tian Chen
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2019/02/11
Conjugate Gradients  Fuzzy Logic  Fuzzy Neural Networks  Gradient Descent  Neural Networks  
Mixed radix systems of fully connected neuro-fuzzy inference systems with special properties Conference paper
Wang J., Chen C.-T., Chen C.L.P., Yu Y.-Q.. Mixed radix systems of fully connected neuro-fuzzy inference systems with special properties[C], 2015, 105-109.
Authors:  Wang J.;  Chen C.-T.;  Chen C.L.P.;  Yu Y.-Q.
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2019/02/11
Fully Connected Neuro-fuzzy System  Fuzzy Logic  Fuzzy Neural Networks  Gradient Descent  Neural Networks  Neuro-fuzzy System