UM

Browse/Search Results:  1-10 of 19 Help

Selected(0)Clear Items/Page:    Sort:
Sine transform based preconditioning techniques for space fractional diffusion equations Journal article
Qin, Hai Hua, Pang, Hong Kui, Sun, Hai Wei. Sine transform based preconditioning techniques for space fractional diffusion equations[J]. Numerical Linear Algebra with Applications, 2022, 30(4), e2474.
Authors:  Qin, Hai Hua;  Pang, Hong Kui;  Sun, Hai Wei
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:1.8/1.8 | Submit date:2023/01/30
Finite Difference Method  Gmres Method  Numerical Range  Space Fractional Derivative  Toeplitz Matrix  τ Preconditioner  
A preconditioner based on sine transform for two-dimensional semi-linear Riesz space fractional diffusion equations in convex domains Journal article
Huang, Xin, Sun, Hai Wei. A preconditioner based on sine transform for two-dimensional semi-linear Riesz space fractional diffusion equations in convex domains[J]. Applied Numerical Mathematics, 2021, 169, 289-302.
Authors:  Huang, Xin;  Sun, Hai Wei
Favorite | TC[WOS]:13 TC[Scopus]:13  IF:2.2/2.3 | Submit date:2021/12/08
Gmres Method  Penalization  Riesz Fractional Derivative  Sine Transform Based Preconditioner  Toeplitz Matrix  
Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations Journal article
Lu,Xin, Fang,Zhi Wei, Sun,Hai Wei. Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations[J]. Journal of Applied Mathematics and Computing, 2020, 66(1-2), 673–700.
Authors:  Lu,Xin;  Fang,Zhi Wei;  Sun,Hai Wei
Favorite | TC[WOS]:20 TC[Scopus]:21  IF:2.4/2.3 | Submit date:2021/03/09
Gmres Method  Riesz Space Fractional Diffusion Equations  Shifted Grünwald Discretization  Sine-transform-based Splitting Preconditioner  Symmetric Positive Definite Toeplitz Matrix  
Fast algorithms for high-order numerical methods for space-fractional diffusion equations Journal article
Lei, Siu-Long, Huang, Yun-Chi. Fast algorithms for high-order numerical methods for space-fractional diffusion equations[J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94(5), 1062-1078.
Authors:  Lei, Siu-Long;  Huang, Yun-Chi
Favorite | TC[WOS]:34 TC[Scopus]:36  IF:1.7/1.5 | Submit date:2018/10/30
Fractional Diffusion Equation  Fourth-order Discretization  Boundary Value Method  Crank-nicolson Preconditioner  Block-circulant Preconditioner  Gmres Method  Circulant- And Skew-circulant Representation Of Toeplitz Matrix Inversion  
Multilevel circulant preconditioner for high-dimensional fractional diffusion equations Journal article
Lei S.-L., Chen X., Zhang X.. Multilevel circulant preconditioner for high-dimensional fractional diffusion equations[J]. East Asian Journal on Applied Mathematics, 2016, 6(2), 109-130.
Authors:  Lei S.-L.;  Chen X.;  Zhang X.
Favorite | TC[WOS]:29 TC[Scopus]:29 | Submit date:2019/02/14
Gmres Method  High-dimensional Two-sided Fractional Diffusion Equation  Implicit Finite Difference Method  Multilevel Circulant Preconditioner  Unconditionally Stable  
Finite difference schemes for two-dimensional time-space fractional differential equations Journal article
Wang Z., Vong S., Lei S.-L.. Finite difference schemes for two-dimensional time-space fractional differential equations[J]. International Journal of Computer Mathematics, 2016, 93(3), 578-595.
Authors:  Wang Z.;  Vong S.;  Lei S.-L.
Favorite | TC[WOS]:18 TC[Scopus]:20 | Submit date:2018/12/24
Adi Scheme  Discrete Energy Method  Preconditioned Gmres Method  Two-dimensional Fractional Differential Equation  Weighted And Shifted Grünwald Difference Operator  
High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives Journal article
Vong S., Lyu P., Chen X., Lei S.-L.. High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives[J]. Numerical Algorithms, 2016, 72(1), 195.
Authors:  Vong S.;  Lyu P.;  Chen X.;  Lei S.-L.
Favorite | TC[WOS]:69 TC[Scopus]:73 | Submit date:2018/10/30
Discrete Energy Method  High Order Difference Scheme  Preconditioned Gmres Method  Two-dimensional Fractional Differential Equation  
Preconditioned iterative methods for twodimensional space-fractional diffusion equations Journal article
Xiao-Qing Jin, Fu-Rong Lin, Zhi Zhao. Preconditioned iterative methods for twodimensional space-fractional diffusion equations[J]. Communications in Computational Physics, 2015, 18(2), 469-488.
Authors:  Xiao-Qing Jin;  Fu-Rong Lin;  Zhi Zhao
Favorite | TC[WOS]:47 TC[Scopus]:49  IF:2.6/2.9 | Submit date:2019/07/26
Fractional Diffusion Equation  Toeplitz Matrix  Fast Fourier Transform  Cn-wsgd Scheme  Preconditioned Gmres Method  Preconditioned Cgnr Method  
Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations Journal article
Jin X.-Q., Lin F.-R., Zhao Z.. Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations[J]. Communications in Computational Physics, 2015, 18(2), 469-488.
Authors:  Jin X.-Q.;  Lin F.-R.;  Zhao Z.
Favorite | TC[WOS]:47 TC[Scopus]:49 | Submit date:2019/02/11
Cn-wsgd Scheme  Fast Fourier Transform  Fractional Diffusion Equation  Preconditioned Cgnr Method  Preconditioned Gmres Method  Toeplitz Matrix  
Preconditioned iterative methods for fractional diffusion equation Journal article
Lin F.-R., Yang S.-W., Jin X.-Q.. Preconditioned iterative methods for fractional diffusion equation[J]. Journal of Computational Physics, 2013, 256, 109.
Authors:  Lin F.-R.;  Yang S.-W.;  Jin X.-Q.
Favorite | TC[WOS]:103 TC[Scopus]:105 | Submit date:2018/10/30
Fft  Fractional Diffusion Equation  Preconditioned Cgnr Method  Preconditioned Gmres Method  Toeplitz Matrix