UM

Browse/Search Results:  1-10 of 43 Help

Selected(0)Clear Items/Page:    Sort:
A variable-step high-order scheme for time-fractional advection-diffusion equation with mixed derivatives Journal article
Feng, Junhong, Lyu, Pin, Vong, Seakweng. A variable-step high-order scheme for time-fractional advection-diffusion equation with mixed derivatives[J]. Numerical Methods for Partial Differential Equations, 2024, 40(6).
Authors:  Feng, Junhong;  Lyu, Pin;  Vong, Seakweng
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.1/2.8 | Submit date:2024/09/03
High-order Method  Mixed Derivatives  Time-fractional Advection-diffusion Equation  Variable Time Steps  
A novel meshless method based on RBF for solving variable-order time fractional advection-diffusion-reaction equation in linear or nonlinear systems[Formula presented] Journal article
Xu,Yi, Sun,Hong Guang, Zhang,Yuhui, Sun,Hai Wei, Lin,Ji. A novel meshless method based on RBF for solving variable-order time fractional advection-diffusion-reaction equation in linear or nonlinear systems[Formula presented][J]. Computers and Mathematics with Applications, 2023, 142, 107-120.
Authors:  Xu,Yi;  Sun,Hong Guang;  Zhang,Yuhui;  Sun,Hai Wei;  Lin,Ji
Favorite | TC[WOS]:6 TC[Scopus]:7  IF:2.9/2.6 | Submit date:2023/08/03
Meshless Method  Nonlinear  Time Fractional Advection-diffusion-reaction Equation  Variable-order Fractional Derivative  
Fast compact finite difference schemes on graded meshes for fourth-order multi-term fractional sub-diffusion equations with the first Dirichlet boundary conditions Journal article
Wang, Zhibo, Ou, Caixia, Cen, Dakang. Fast compact finite difference schemes on graded meshes for fourth-order multi-term fractional sub-diffusion equations with the first Dirichlet boundary conditions[J]. International Journal of Computer Mathematics, 2023, 100(2), 361-382.
Authors:  Wang, Zhibo;  Ou, Caixia;  Cen, Dakang
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:1.7/1.5 | Submit date:2023/01/30
Fast Compact Difference Scheme  First Dirichlet Boundary Conditions  Fourth-order Multi-term Fractional Sub-diffusion Equation  Non-smooth Solution  Stability And Convergence  
A τ-preconditioner for a non-symmetric linear system arising from multi-dimensional Riemann-Liouville fractional diffusion equation Journal article
Lin, Xue lei, Huang, Xin, Ng, Michael K., Sun, Hai Wei. A τ-preconditioner for a non-symmetric linear system arising from multi-dimensional Riemann-Liouville fractional diffusion equation[J]. Numerical Algorithms, 2023, 92(1), 795 - 813.
Authors:  Lin, Xue lei;  Huang, Xin;  Ng, Michael K.;  Sun, Hai Wei
Favorite | TC[WOS]:8 TC[Scopus]:5  IF:1.7/1.9 | Submit date:2022/08/05
Convergence Of Gmres  Fractional Diffusion Equation  Non-symmetric Linear System  Preconditioning  
Fast Second-Order Evaluation for Variable-Order Caputo Fractional Derivative with Applications to Fractional Sub-Diffusion Equations Journal article
Zhang, Jia Li, Fang, Zhi Wei, Sun, Hai Wei. Fast Second-Order Evaluation for Variable-Order Caputo Fractional Derivative with Applications to Fractional Sub-Diffusion Equations[J]. Numerical Mathematics, 2022, 15(1), 200-226.
Authors:  Zhang, Jia Li;  Fang, Zhi Wei;  Sun, Hai Wei
Favorite | TC[WOS]:9 TC[Scopus]:9  IF:1.9/1.3 | Submit date:2022/05/17
Convergence  Exponential-sum-approximation Method  Fast Algorithm  Stability  Time-fractional Sub-diffusion Equation  Variable-order Caputo Fractional Derivative  
A fast linearized numerical method for nonlinear time-fractional diffusion equations Journal article
Lyu,Pin, Vong,Seakweng. A fast linearized numerical method for nonlinear time-fractional diffusion equations[J]. Numerical Algorithms, 2021, 87(1), 381-408.
Authors:  Lyu,Pin;  Vong,Seakweng
Favorite | TC[WOS]:9 TC[Scopus]:9  IF:1.7/1.9 | Submit date:2021/03/09
Caputo Derivative  Nonlinear Time-fractional Diffusion Equation  Linearized Method  
An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order Journal article
Gu, Xian Ming, Sun, Hai Wei, Zhao, Yong Liang, Zheng, Xiangcheng. An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order[J]. Applied Mathematics Letters, 2021, 120, 107270.
Authors:  Gu, Xian Ming;  Sun, Hai Wei;  Zhao, Yong Liang;  Zheng, Xiangcheng
Favorite | TC[WOS]:40 TC[Scopus]:41  IF:2.9/2.6 | Submit date:2021/12/08
Error Estimate  Implicit Difference Scheme  Time-fractional Diffusion Equation  Variable-order  
Exponential-sum-approximation technique for variable-order time-fractional diffusion equations Journal article
Zhang, Jia Li, Fang, Zhi Wei, Sun, Hai Wei. Exponential-sum-approximation technique for variable-order time-fractional diffusion equations[J]. Journal of Applied Mathematics and Computing, 2021, 68(1), 323-347.
Authors:  Zhang, Jia Li;  Fang, Zhi Wei;  Sun, Hai Wei
Favorite | TC[WOS]:26 TC[Scopus]:25  IF:2.4/2.3 | Submit date:2022/03/04
Exponential-sum-approximation Method  Fast Algorithm  Stability And Convergence  Time-fractional Diffusion Equation  
Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations Journal article
Pang,Hong Kui, Qin,Hai Hua, Sun,Hai Wei, Ma,Ting Ting. Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations[J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 85, 18-29.
Authors:  Pang,Hong Kui;  Qin,Hai Hua;  Sun,Hai Wei;  Ma,Ting Ting
Favorite | TC[WOS]:7 TC[Scopus]:7  IF:2.9/2.6 | Submit date:2021/03/09
Circulant-based Preconditioner  Decay Property  Finite Difference Method  Fractional Diffusion Equation  Toeplitz-like  
Numerical solution for multi-dimensional Rieszfractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method Journal article
Zhang, L., Sun, H. W.. Numerical solution for multi-dimensional Rieszfractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method[J]. Journal of Applied Mathematics and Computing, 2020, 449-472.
Authors:  Zhang, L.;  Sun, H. W.
Favorite | TC[WOS]:9 TC[Scopus]:10  IF:2.4/2.3 | Submit date:2022/07/25
Riesz Fractional Reaction–diffusion Equation·toeplitz Structure  Exponential Runge–kutta Method  Matrix Exponential  Shift-invert Lanczos Method