UM

Browse/Search Results:  1-10 of 12 Help

Selected(0)Clear Items/Page:    Sort:
Mathematical Analysis and a Second-Order Compact Scheme for Nonlinear Caputo–Hadamard Fractional Sub-diffusion Equations Journal article
Guan, Kaijing, Ou, Caixia, Wang, Zhibo. Mathematical Analysis and a Second-Order Compact Scheme for Nonlinear Caputo–Hadamard Fractional Sub-diffusion Equations[J]. Mediterranean Journal of Mathematics, 2024, 21(3), 77.
Authors:  Guan, Kaijing;  Ou, Caixia;  Wang, Zhibo
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:1.1/1.1 | Submit date:2024/05/16
35r11  65m06  65m12  Discrete Fractional Gro¨nwall Inequality  Non-uniform Grids  Nonlinear Caputo–hadamard Fractional Differential Equations  Stability And Convergence  Weak Singularity  
Fitted schemes for Caputo-Hadamard fractional differential equations Journal article
Ou, Caixia, Cen, Dakang, Wang, Zhibo, Vong, Seakweng. Fitted schemes for Caputo-Hadamard fractional differential equations[J]. Numerical Algorithms, 2023, 97(1), 135-164.
Authors:  Ou, Caixia;  Cen, Dakang;  Wang, Zhibo;  Vong, Seakweng
Favorite | TC[WOS]:7 TC[Scopus]:6  IF:1.7/1.9 | Submit date:2024/02/22
Caputo-hadamard Fractional Differential Equations  Weak Singularity  Fitted Scheme  Fast Algorithm  Nonuniform Meshes  
An Order Reduction Method for the Nonlinear Caputo‑Hadamard Fractional Difusion‑Wave Model Journal article
Zhang, Jieying, Ou, Caixia, Wang, Zhibo, Vong, Seakweng. An Order Reduction Method for the Nonlinear Caputo‑Hadamard Fractional Difusion‑Wave Model[J]. Communications on Applied Mathematics and Computation, 2023, s42967-023-00295-5.
Authors:  Zhang, Jieying;  Ou, Caixia;  Wang, Zhibo;  Vong, Seakweng
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:1.4/0 | Submit date:2024/02/22
Caputo-hadamard Fractional Differential Equations (Fdes)  Nonuniform Mesh  Stability And Convergence  Symmetric Fractional-order Reduction Method  
Fast solvers for finite difference scheme of two-dimensional time-space fractional differential equations Journal article
Huang,Yun Chi, Lei,Siu Long. Fast solvers for finite difference scheme of two-dimensional time-space fractional differential equations[J]. NUMERICAL ALGORITHMS, 2020, 84(1), 37-62.
Authors:  Huang,Yun Chi;  Lei,Siu Long
Favorite | TC[WOS]:10 TC[Scopus]:10  IF:1.7/1.9 | Submit date:2021/03/11
Time-space Fractional Differential Equations  Alternating Direction Implicit Scheme  Block Lower Triangular Toeplitz Matrix  Divide-and-conquer  Time-marching  
A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equations Journal article
Lyu, Pin, Vong, Seakweng. A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equations[J]. NUMERICAL ALGORITHMS, 2018, 78(2), 485-511.
Authors:  Lyu, Pin;  Vong, Seakweng
Favorite | TC[WOS]:30 TC[Scopus]:30  IF:1.7/1.9 | Submit date:2018/10/30
Linearized Scheme  Time Fractional Differential Equations  Nonlinear Klein-gordon Equations  Convergence  
On variational properties of balanced central fractional derivatives Journal article
Xu, Y.F., Sun, H. W., Sheng, Q.. On variational properties of balanced central fractional derivatives[J]. International Journal of Computer Mathematics, 2018, 1195-1209.
Authors:  Xu, Y.F.;  Sun, H. W.;  Sheng, Q.
Favorite | TC[WOS]:8 TC[Scopus]:9  IF:1.7/1.5 | Submit date:2022/06/28
Fractional Derivatives  Left-sided And Right-sided Formulae  Fractional Differential Equations  Ritz–galerkin Method  Weak Solutions  Variational Principal  
On variational properties of balanced central fractional derivatives Journal article
Xu,Yufeng, Sun,Hai Wei, Sheng,Qin. On variational properties of balanced central fractional derivatives[J]. International Journal of Computer Mathematics, 2018, 95(6-7), 1195-1209.
Authors:  Xu,Yufeng;  Sun,Hai Wei;  Sheng,Qin
Favorite | TC[WOS]:8 TC[Scopus]:9  IF:1.7/1.5 | Submit date:2019/05/27
Fractional Derivatives  Fractional Differential Equations  Left-sided And Right-sided Formulae  Ritz–galerkin Method  Variational Principal  Weak Solutions  
A Fast Preconditioned Penalty Method for American Options Pricing Under Regime-Switching Tempered Fractional Diffusion Models Journal article
Siu-Long Lei, Wenfei Wang, Xu Chen, Deng Ding. A Fast Preconditioned Penalty Method for American Options Pricing Under Regime-Switching Tempered Fractional Diffusion Models[J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 75(3), 1633-1655.
Authors:  Siu-Long Lei;  Wenfei Wang;  Xu Chen;  Deng Ding
Favorite | TC[WOS]:14 TC[Scopus]:14  IF:2.8/2.7 | Submit date:2019/05/22
American Options  Fast Preconditioned Penalty Method  Linear Complementarity Problems  Nonlinear Tempered Fractional Partial Differential Equations  Regime-switching Lévy Process  Unconditional Stability  
A fast numerical method for block lower triangular Toeplitz with dense Toeplitz blocks system with applications to time-space fractional diffusion equations Journal article
Huang, Yun-Chi, Lei, Siu-Long. A fast numerical method for block lower triangular Toeplitz with dense Toeplitz blocks system with applications to time-space fractional diffusion equations[J]. NUMERICAL ALGORITHMS, 2017, 76(3), 605-616.
Authors:  Huang, Yun-Chi;  Lei, Siu-Long
Favorite | TC[WOS]:24 TC[Scopus]:24  IF:1.7/1.9 | Submit date:2018/10/30
Block Lower Triangular Toeplitz Matrix With Dense Toeplitz Blocks  Circulant-and-skew-circulant Representation Of Toeplitz Matrix Inversion  Divide-and-conquer Strategy  Fast Fourier Transform  Time-space Fractional Partial Differential Equations  
A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations Journal article
Ke,Rihuan, Ng,Michael K., Sun,Hai Wei. A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations[J]. Journal of Computational Physics, 2015, 303, 203-211.
Authors:  Ke,Rihuan;  Ng,Michael K.;  Sun,Hai Wei
Favorite | TC[WOS]:78 TC[Scopus]:80 | Submit date:2019/05/27
Block Triangular Toeplitz-like Matrix  Direct Methods  Divide-and-conquer Strategy  Fast Fourier Transform  Fractional Partial Differential Equations