UM

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Fueter mapping theorem in hypercomplex analysis Book chapter
出自: Operator Theory:Springer, Basel, 2015
Authors:  Tao Qian
Favorite | TC[Scopus]:14 | Submit date:2019/06/17
Dirac Operator  Clifford Algebra  Functional Calculus  Singular Integral Operator  Fourier Multiplier  
Unbounded holomorphic Fourier multipliers on starlike Lipschitz surfaces and applications to Sobolev spaces Journal article
Li P., Qian T.. Unbounded holomorphic Fourier multipliers on starlike Lipschitz surfaces and applications to Sobolev spaces[J]. Nonlinear Analysis, Theory, Methods and Applications, 2014, 95, 436-449.
Authors:  Li P.;  Qian T.
Favorite | TC[WOS]:0 TC[Scopus]:1 | Submit date:2019/02/11
Fourier Multiplier  Hardy-sobolev Spaces  Quaternionic Space  Singular Integral  Starlike Lipschitz Surface  
A class of Fourier multipliers on starlike Lipschitz surfaces Journal article
Li P., Leong I.T., Qian T.. A class of Fourier multipliers on starlike Lipschitz surfaces[J]. Journal of Functional Analysis, 2011, 261(6), 1415-1445.
Authors:  Li P.;  Leong I.T.;  Qian T.
Favorite | TC[WOS]:1 TC[Scopus]:2 | Submit date:2019/02/11
Clifford Analysis  Fourier Multiplier  Monogenic Function  Singular Integral  Starlike Lipschitz Surface  
Singular integrals and Fourier multipliers on unit spheres and their Lipschitz perturbations Journal article
Tao Qian. Singular integrals and Fourier multipliers on unit spheres and their Lipschitz perturbations[J]. Advances in Applied Clifford Algebras, 2001, 11, 53–76.
Authors:  Tao Qian
Favorite | TC[Scopus]:0  IF:1.1/1.1 | Submit date:2019/06/17
Fourier Multiplier  Singular Integral  Dirac Operator  The Unit Sphere In Rn  Lipschitz Domains  
Fourier Analysis on Starlike Lipschitz Surfaces Journal article
Qian T.. Fourier Analysis on Starlike Lipschitz Surfaces[J]. Journal of Functional Analysis, 2001, 183(2), 370.
Authors:  Qian T.
Favorite | TC[WOS]:37 TC[Scopus]:38 | Submit date:2018/10/30
Functional Calculus  Dirac Operator  The Unit Sphere In Rn  Fourier Multiplier  Singular Integral