UM

Browse/Search Results:  1-9 of 9 Help

Selected(0)Clear Items/Page:    Sort:
Constrained parameter-splitting multiple-scales method for the primary/sub-harmonic resonance of a cantilever-type vibration energy harvester Journal article
Du, Hai-En, Li, Lan-Juan, Er, Guo-Kang, Iu, vai Pan. Constrained parameter-splitting multiple-scales method for the primary/sub-harmonic resonance of a cantilever-type vibration energy harvester[J]. International Journal of Structural Stability and Dynamics, 2023, 23(20), 37.
Authors:  Du, Hai-En;  Li, Lan-Juan;  Er, Guo-Kang;  Iu, vai Pan
Favorite | TC[WOS]:3 TC[Scopus]:3 | Submit date:2023/06/29
Perturbation Method  Geometrically Nonlinear Cantilever  Large Deflection  Floquet Theory  Forced Vibration  
A Hybrid Method for the Primary Resonance Response of Harmonically Forced Strongly Nonlinear Oscillators Journal article
Du, Hai-En, Li, Lijuan, Er, Guo-Kang, Iu, Vai Pan. A Hybrid Method for the Primary Resonance Response of Harmonically Forced Strongly Nonlinear Oscillators[J]. International Journal of Structural Stability and Dynamics, 2022, 23(06), 2350067.
Authors:  Du, Hai-En;  Li, Lijuan;  Er, Guo-Kang;  Iu, Vai Pan
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:3.0/2.9 | Submit date:2023/03/09
Perturbation Method  Duffing Oscillator  Nonlinear Cantilever  Floquet Theory  Strong Nonlinearity  Forced Vibration  
A Novel Method to Improve the Multiple-Scales Solution of the Forced Nonlinear Oscillators Journal article
Du,Hai En, Er,Guo Kang, Iu,Vai Pan. A Novel Method to Improve the Multiple-Scales Solution of the Forced Nonlinear Oscillators[J]. International Journal of Computational Methods, 2019, 16(4).
Authors:  Du,Hai En;  Er,Guo Kang;  Iu,Vai Pan
Favorite | TC[WOS]:6 TC[Scopus]:5  IF:1.4/1.3 | Submit date:2021/03/09
Forced Vibration  Improved Solution  Multiple-scales Method  Perturbation Method  Strong Nonlinearity  
A Novel Method to Improve the Multiple-Scales Solution of the Forced Nonlinear Oscillators Journal article
Du, H. E., Er, G. K., Iu, V. P.. A Novel Method to Improve the Multiple-Scales Solution of the Forced Nonlinear Oscillators[J]. International Journal of Computational Methods, 2018, 1843010-1-1843010-17.
Authors:  Du, H. E.;  Er, G. K.;  Iu, V. P.
Favorite | TC[WOS]:6 TC[Scopus]:5 | Submit date:2022/08/26
Perturbation Method  Multiple-scales Method  Strong Nonlinearity  Improvedsolution  Forced Vibration.  
Analysis of the forced vibration of geometrically nonlinear cantilever beam with lumping mass by multiple scale Lindstedt-Poincare method Conference paper
Du, H., Er, G. K., Iu, V. P.. Analysis of the forced vibration of geometrically nonlinear cantilever beam with lumping mass by multiple scale Lindstedt-Poincare method[C], 2017.
Authors:  Du, H.;  Er, G. K.;  Iu, V. P.
Favorite |  | Submit date:2022/08/26
Forced Vibration  Geometrically Nonlinear Cantilever Beam  Multiple-Scales  Lindstedt-Poincaré Method  
A Novel Method to Improve the Multiple-scales Solution of the Forced Strongly Nonlinear Oscillators Conference paper
Du, H. E., Er, G. K., Iu, V. P.. A Novel Method to Improve the Multiple-scales Solution of the Forced Strongly Nonlinear Oscillators[C], 2017.
Authors:  Du, H. E.;  Er, G. K.;  Iu, V. P.
Favorite |  | Submit date:2022/08/26
Perturbation method  Strong nonlinearity  Nonlinear restoring force  Nonlinear inertial force  Forced Vibration  
Forced vibration analysis of functionally graded beams by the meshfree boundary-domain integral equation method Journal article
Yang,Y., Lam,C. C., Kou,K. P.. Forced vibration analysis of functionally graded beams by the meshfree boundary-domain integral equation method[J]. Engineering Analysis with Boundary Elements, 2016, 72, 100-110.
Authors:  Yang,Y.;  Lam,C. C.;  Kou,K. P.
Favorite | TC[WOS]:25 TC[Scopus]:25  IF:4.2/3.3 | Submit date:2021/03/11
Finite Element Analysis  Forced Vibration Dynamic Analysis  Functionally Graded Beams  Meshfree Boundary-domain Integral Equation Method  Radial Integral Method (Rim)  
Forced vibration analysis of functionally graded beams by the meshfree boundary-domain integral equation method Journal article
Yang Y., Lam C.C., Kou K.P.. Forced vibration analysis of functionally graded beams by the meshfree boundary-domain integral equation method[J]. Engineering Analysis with Boundary Elements, 2016, 72, 100-110.
Authors:  Yang Y.;  Lam C.C.;  Kou K.P.
Favorite | TC[WOS]:25 TC[Scopus]:25 | Submit date:2019/02/13
Finite Element Analysis  Forced Vibration Dynamic Analysis  Functionally Graded Beams  Meshfree Boundary-domain Integral Equation Method  Radial Integral Method (Rim)  
Forced vibration analysis of functionally graded beams by the meshfree boundary-domain integral equation method Journal article
Yang, Y., Lam, C. C., Kou, K. P.. Forced vibration analysis of functionally graded beams by the meshfree boundary-domain integral equation method[J]. Engineering Analysis with Boundary Elements, 2016, 100-110.
Authors:  Yang, Y.;  Lam, C. C.;  Kou, K. P.
Favorite | TC[WOS]:25 TC[Scopus]:25  IF:4.2/3.3 | Submit date:2022/08/06
Functionally Graded Beams  Forced Vibration Dynamic Analysis  Meshfree Boundary-domain Integral Equation Method  Radial Integral Method (Rim)  Finite Element Analysis