UM

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Constrained parameter-splitting multiple-scales method for the primary/sub-harmonic resonance of a cantilever-type vibration energy harvester Journal article
Du, Hai-En, Li, Lan-Juan, Er, Guo-Kang, Iu, vai Pan. Constrained parameter-splitting multiple-scales method for the primary/sub-harmonic resonance of a cantilever-type vibration energy harvester[J]. International Journal of Structural Stability and Dynamics, 2023, 23(20), 37.
Authors:  Du, Hai-En;  Li, Lan-Juan;  Er, Guo-Kang;  Iu, vai Pan
Favorite | TC[WOS]:3 TC[Scopus]:3 | Submit date:2023/06/29
Perturbation Method  Geometrically Nonlinear Cantilever  Large Deflection  Floquet Theory  Forced Vibration  
Constrained parameter-splitting perturbation method for the improved solutions to the nonlinear vibrations of Euler–Bernoulli cantilevers Journal article
Du, Hai-En, Er, Guo-Kang, Iu, Vai Pan, Li, Lijuan. Constrained parameter-splitting perturbation method for the improved solutions to the nonlinear vibrations of Euler–Bernoulli cantilevers[J]. Nonlinear Dynamics, 2023, 111, 9025-9047.
Authors:  Du, Hai-En;  Er, Guo-Kang;  Iu, Vai Pan;  Li, Lijuan
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:5.2/4.8 | Submit date:2023/03/09
Nonlinear Cantilever  Parameter Splitting  Constraint  Strongly Nonlinear  Optimum Solution  Floquet Theory  
A Hybrid Method for the Primary Resonance Response of Harmonically Forced Strongly Nonlinear Oscillators Journal article
Du, Hai-En, Li, Lijuan, Er, Guo-Kang, Iu, Vai Pan. A Hybrid Method for the Primary Resonance Response of Harmonically Forced Strongly Nonlinear Oscillators[J]. International Journal of Structural Stability and Dynamics, 2022, 23(06), 2350067.
Authors:  Du, Hai-En;  Li, Lijuan;  Er, Guo-Kang;  Iu, Vai Pan
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:3.0/2.9 | Submit date:2023/03/09
Perturbation Method  Duffing Oscillator  Nonlinear Cantilever  Floquet Theory  Strong Nonlinearity  Forced Vibration  
Theory and Applications of Quaternion-valued Differential Equations Book
Xia, Y., Kou, K. I., Liu, Y.. Theory and Applications of Quaternion-valued Differential Equations[M]. Beijing:Science Press, 2021.
Authors:  Xia, Y.;  Kou, K. I.;  Liu, Y.
Favorite |  | Submit date:2022/07/27
Quaternion Differential Equations  Floquet Theory  
Floquet Theory for Quaternion-Valued Differential Equations Journal article
Cheng,Dong, Kou,Kit Ian, Xia,Yong Hui. Floquet Theory for Quaternion-Valued Differential Equations[J]. Qualitative Theory of Dynamical Systems, 2020, 19(1), 14.
Authors:  Cheng,Dong;  Kou,Kit Ian;  Xia,Yong Hui
Favorite | TC[WOS]:15 TC[Scopus]:12  IF:1.9/1.4 | Submit date:2021/03/11
Floquet Theory  Hill’s Equation  Non-commutativity  Periodic Systems  Quaternion