UM

Browse/Search Results:  1-10 of 15 Help

Selected(0)Clear Items/Page:    Sort:
TIME TWO-GRID TECHNIQUE COMBINED WITH TEMPORAL SECOND ORDER DIFFERENCE METHOD FOR SEMILINEAR FRACTIONAL DIFFUSION-WAVE EQUATIONS Journal article
Cen, Dakang, Ou, Caixia, Wang, Zhibo, Vong, Seakweng. TIME TWO-GRID TECHNIQUE COMBINED WITH TEMPORAL SECOND ORDER DIFFERENCE METHOD FOR SEMILINEAR FRACTIONAL DIFFUSION-WAVE EQUATIONS[J]. Discrete and Continuous Dynamical Systems - Series B, 2024, 29(7), 3137-3162.
Authors:  Cen, Dakang;  Ou, Caixia;  Wang, Zhibo;  Vong, Seakweng
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.3/1.2 | Submit date:2024/05/16
Convergence  Finite Difference Method  Semilinear Fractional Diffusion-wave Equations  Stability  Temporal Second Order Scheme  Time Two-grid Technique  
ONE-PARAMETER FINITE DIFFERENCE METHODS AND THEIR ACCELERATED SCHEMES FOR SPACE-FRACTIONAL SINE-GORDON EQUATIONS WITH DISTRIBUTED DELAY Journal article
Sun, Tao, Zhang, Chengjian, Sun, Haiwei. ONE-PARAMETER FINITE DIFFERENCE METHODS AND THEIR ACCELERATED SCHEMES FOR SPACE-FRACTIONAL SINE-GORDON EQUATIONS WITH DISTRIBUTED DELAY[J]. Journal of Computational Mathematics, 2024, 42(3), 705-734.
Authors:  Sun, Tao;  Zhang, Chengjian;  Sun, Haiwei
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:0.9/1.0 | Submit date:2024/05/16
Adi Scheme  Convergence Analysis  Fractional Sine-gordon Equation With Distributed Delay  One-parameter Finite Difference Methods  Pcg Method  
A Preconditioned Iterative Method for a Multi-State Time-Fractional Linear Complementary Problem in Option Pricing Journal article
Chen,Xu, Gong,Xinxin, Lei,Siu Long, Sun,Youfa. A Preconditioned Iterative Method for a Multi-State Time-Fractional Linear Complementary Problem in Option Pricing[J]. Fractal and Fractional, 2023, 7(4), 334.
Authors:  Chen,Xu;  Gong,Xinxin;  Lei,Siu Long;  Sun,Youfa
Favorite | TC[WOS]:2 TC[Scopus]:1  IF:3.6/3.5 | Submit date:2023/08/03
Linear Complementary Problem  Nonlinear Finite Difference Scheme  Policy Iteration Method  Preconditioner  Time-fractional Derivative  
An Efficient Second‑Order Convergent Scheme for One‑Side Space Fractional Diffusion Equations with Variable Coefficients Journal article
Lin Xuelei, Lyu Pin, Michael K. Ng, Sun HW(孫海衛), Seak Weng Vong. An Efficient Second‑Order Convergent Scheme for One‑Side Space Fractional Diffusion Equations with Variable Coefficients[J]. Communications on Applied Mathematics and Computation, 2020, 2(2), 215--239.
Authors:  Lin Xuelei;  Lyu Pin;  Michael K. Ng;  Sun HW(孫海衛);  Seak Weng Vong
Adobe PDF | Favorite | TC[WOS]:5 TC[Scopus]:5  IF:1.4/0 | Submit date:2022/07/28
One-side Space Fractional Diffusion Equation  Variable Diffusion Coefficients  Stability And Convergence  High-order Finite-difference Scheme  Preconditioner  
A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony‐type equation with nonsmooth solutions Journal article
Pin, Lyu, Seakweng, Vong. A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony‐type equation with nonsmooth solutions[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019.
Authors:  Pin, Lyu;  Seakweng, Vong
Favorite | TC[WOS]:12 TC[Scopus]:13  IF:2.1/2.8 | Submit date:2022/07/01
Caputo Derivative  Finite Difference Scheme  Fractional Bbm-type Equation  Nonuniform Time Grid  Unconditional Convergence  
A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony-type equation with nonsmooth solutions Journal article
Lyu,Pin, Vong,Seakweng. A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony-type equation with nonsmooth solutions[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 36(3), 579-600.
Authors:  Lyu,Pin;  Vong,Seakweng
Favorite | TC[WOS]:12 TC[Scopus]:13  IF:2.1/2.8 | Submit date:2021/03/09
Caputo Derivative  Finite Difference Scheme  Fractional Bbm-type Equation  Nonuniform Time Grid  Unconditional Convergence  
Probabilistic Solutions of a Stretched Beam Discretized with Finite Difference Scheme and Excited by Kanai-Tajimi Ground Motion Journal article
Er, G. K., Iu, V. P., Du, H. E.. Probabilistic Solutions of a Stretched Beam Discretized with Finite Difference Scheme and Excited by Kanai-Tajimi Ground Motion[J]. Archives of Mechanics, 2019, 433-457.
Authors:  Er, G. K.;  Iu, V. P.;  Du, H. E.
Favorite | TC[WOS]:3 TC[Scopus]:12  IF:1.1/0.9 | Submit date:2022/08/26
Stretched Beam  Nonlinear Random Vibration  Fpk Equation  Kanai-tajimi Ground Motion  Finite Difference Scheme  
A study on a second order finite difference scheme for fractional advection–diffusion equations Journal article
Vong,Seakweng, Shi,Chenyang, Lyu,Pin. A study on a second order finite difference scheme for fractional advection–diffusion equations[J]. Numerical Methods for Partial Differential Equations, 2019, 35(2), 493-508.
Authors:  Vong,Seakweng;  Shi,Chenyang;  Lyu,Pin
Favorite | TC[WOS]:4 TC[Scopus]:5  IF:2.1/2.8 | Submit date:2021/03/09
Finite Difference Method  Fractional Advection–diffusion Equations  Second Order Scheme  
Probabilistic solutions of a stretched beam discretized with finite difference scheme and excited by Kanai–Tajimi ground motion Journal article
Er,G. K., Iu,V. P., Du,H. E.. Probabilistic solutions of a stretched beam discretized with finite difference scheme and excited by Kanai–Tajimi ground motion[J]. Archives of Mechanics, 2019, 71(4-5), 433-457.
Authors:  Er,G. K.;  Iu,V. P.;  Du,H. E.
Favorite | TC[WOS]:3 TC[Scopus]:12  IF:1.1/0.9 | Submit date:2021/03/09
Finite Difference Scheme  Fpk Equation  Kanai–tajimi Ground Motion  Nonlinear Random Vibration  Stretched Beam  
A high-order compact scheme for the nonlinear fractional Klein-Gordon equation Journal article
Vong S., Wang Z.. A high-order compact scheme for the nonlinear fractional Klein-Gordon equation[J]. Numerical Methods for Partial Differential Equations, 2015, 31(3), 706-722.
Authors:  Vong S.;  Wang Z.
Favorite | TC[WOS]:29 TC[Scopus]:33 | Submit date:2018/12/24
Compact Finite Difference Scheme  Convergence  Nonlinear Fractional Klein-gordon Equation  Solvability  Stability