UM

Browse/Search Results:  1-4 of 4 Help

Selected(0)Clear Items/Page:    Sort:
Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables under Filtered Gaussian White Noise Journal article
Er,G. K., Wang,K., Iu,V. P.. Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables under Filtered Gaussian White Noise[J]. International Journal of Structural Stability and Dynamics, 2018, 18(4).
Authors:  Er,G. K.;  Wang,K.;  Iu,V. P.
Favorite | TC[WOS]:10 TC[Scopus]:12  IF:3.0/2.9 | Submit date:2021/03/09
Cable System  Filtered Gaussian White Noise  Nonlinear Random Vibration  Probabilistic Solution  
Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables under Filtered Gaussian White Noise Journal article
Er G.K., Wang K., Iu V.P.. Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables under Filtered Gaussian White Noise[J]. International Journal of Structural Stability and Dynamics, 2018, 18(4).
Authors:  Er G.K.;  Wang K.;  Iu V.P.
Favorite | TC[WOS]:10 TC[Scopus]:12 | Submit date:2019/02/12
Cable System  Filtered Gaussian White Noise  Nonlinear Random Vibration  Probabilistic Solution  
Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables Under Filtered Gaussian White Noise Journal article
Er, G. K., Wang, K., Iu, V. P.. Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables Under Filtered Gaussian White Noise[J]. INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2018, 18(4).
Authors:  Er, G. K.;  Wang, K.;  Iu, V. P.
Favorite | TC[WOS]:10 TC[Scopus]:12  IF:3.0/2.9 | Submit date:2018/10/30
Nonlinear Random Vibration  Cable System  Probabilistic Solution  Filtered Gaussian White Noise  
Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables Under Filtered Gaussian White Noise Journal article
Er, G. K., Wang, K., Iu, V. P.. Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables Under Filtered Gaussian White Noise[J]. International Journal of Structural Stability and Dynamics, 2017, 1850062-1-1850062-15.
Authors:  Er, G. K.;  Wang, K.;  Iu, V. P.
Favorite | TC[WOS]:10 TC[Scopus]:12  IF:3.0/2.9 | Submit date:2022/08/26
Nonlinear Random Vibration  Cable System  Probabilistic Solution  Filtered Gaussian White Noise