UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
Exponential Ergodicity for SDEs Driven by -Stable Processes with Markovian Switching in Wasserstein Distances Journal article
Tong, Jinying, Jin, Xinghu, Zhang, Zhenzhong. Exponential Ergodicity for SDEs Driven by -Stable Processes with Markovian Switching in Wasserstein Distances[J]. POTENTIAL ANALYSIS, 2018, 49(4), 503-526.
Authors:  Tong, Jinying;  Jin, Xinghu;  Zhang, Zhenzhong
Favorite | TC[WOS]:6 TC[Scopus]:6  IF:1.0/1.0 | Submit date:2018/10/30
Exponential Ergodicity  Symmetric -stable Process  Markovian Switching  M-matrix  Wasserstein Distance  Coupling Method  
Irreducibility of stochastic real Ginzburg-Landau equation driven by alpha-stable noises and applications Journal article
Wang, Ran, Xiong, Jie, Xu, Lihu. Irreducibility of stochastic real Ginzburg-Landau equation driven by alpha-stable noises and applications[J]. BERNOULLI, 2017, 23(2), 1179-1201.
Authors:  Wang, Ran;  Xiong, Jie;  Xu, Lihu
Favorite | TC[WOS]:10 TC[Scopus]:10  IF:1.5/1.6 | Submit date:2018/10/30
Alpha-stable Noises  Exponential Ergodicity  Irreducibility  Moderate Deviation Principle  Stochastic Real Ginzburg-landau Equation  
Irreducibility of stochastic real Ginzburg-Landau equation driven by a-stable noises and applications Journal article
Wang,Ran, Xiong,Jie, Xu,Lihu. Irreducibility of stochastic real Ginzburg-Landau equation driven by a-stable noises and applications[J]. BERNOULLI, 2017, 23(2), 1179-1201.
Authors:  Wang,Ran;  Xiong,Jie;  Xu,Lihu
Favorite | TC[WOS]:10 TC[Scopus]:10  IF:1.5/1.6 | Submit date:2019/06/03
Exponential Ergodicity  Irreducibility  Moderate Deviation Principle  Stochastic Real Ginzburg-landau Equation  Α-stable Noises