UM

Browse/Search Results:  1-10 of 17 Help

Selected(0)Clear Items/Page:    Sort:
Pointwise Error Estimates of L1 Method for Multi-Singularity Problems Arising in Delay Fractional Equations Journal article
Cen, Dakang, Liang, Hui, Vong, Seakweng. Pointwise Error Estimates of L1 Method for Multi-Singularity Problems Arising in Delay Fractional Equations[J]. East Asian Journal on Applied Mathematics, 2024, 14(4), 820-840.
Authors:  Cen, Dakang;  Liang, Hui;  Vong, Seakweng
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.2/1.0 | Submit date:2024/11/05
Delay Fractional Equation  L1 Method  Multi-singularity Problem  Pointwise Error Estimate  Simultaneous Inversion Of Multi-parameters  
Joint Channel Estimation and Reinforcement-Learning-Based Resource Allocation of Intelligent-Reflecting-Surface-Aided Multicell Mobile Edge Computing Journal article
Xu Wenhan, Yu Jiadong, Wu Yuan, Tsang Danny Hin Kwok. Joint Channel Estimation and Reinforcement-Learning-Based Resource Allocation of Intelligent-Reflecting-Surface-Aided Multicell Mobile Edge Computing[J]. IEEE Internet of Things Journal, 2024, 11(7), 11862-11875.
Authors:  Xu Wenhan;  Yu Jiadong;  Wu Yuan;  Tsang Danny Hin Kwok
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:8.2/9.0 | Submit date:2024/05/02
Channel Estimate  Intelligent Reflecting Surface (Irs)  Mobile Edge Computation  Multicell Networks  Proximal Policy Optimization (Ppo)  Reinforcement Learning (Rl)  
A stabilized fully-discrete scheme for phase field crystal equation Journal article
Zhang, Fan, Li, Dongfang, Sun, Hai Wei, Zhang, Jia Li. A stabilized fully-discrete scheme for phase field crystal equation[J]. Applied Numerical Mathematics, 2022, 178, 337-355.
Authors:  Zhang, Fan;  Li, Dongfang;  Sun, Hai Wei;  Zhang, Jia Li
Favorite | TC[WOS]:11 TC[Scopus]:11  IF:2.2/2.3 | Submit date:2022/05/13
Compact Difference Scheme  Crank-nicolson/adams-bashforth Scheme  Energy Stability  Error Estimate  Phase Field Crystal Equation  
Pointwise error estimate and stability analysis of fourth-order compact difference scheme for time-fractional Burgers’ equation Journal article
Qifeng Zhang, Cuicui Sun, Zhi Wei Fang, Hai Wei Sun. Pointwise error estimate and stability analysis of fourth-order compact difference scheme for time-fractional Burgers’ equation[J]. Applied Mathematics and Computation, 2022, 418, 126824.
Authors:  Qifeng Zhang;  Cuicui Sun;  Zhi Wei Fang;  Hai Wei Sun
Favorite | TC[WOS]:19 TC[Scopus]:19  IF:3.5/3.1 | Submit date:2022/05/04
Compact Difference Scheme  Fractional Burgers’ Equation  Pointwise Error Estimate  Reduction Order Method  
An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order Journal article
Gu, Xian Ming, Sun, Hai Wei, Zhao, Yong Liang, Zheng, Xiangcheng. An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order[J]. Applied Mathematics Letters, 2021, 120, 107270.
Authors:  Gu, Xian Ming;  Sun, Hai Wei;  Zhao, Yong Liang;  Zheng, Xiangcheng
Favorite | TC[WOS]:40 TC[Scopus]:41  IF:2.9/2.6 | Submit date:2021/12/08
Error Estimate  Implicit Difference Scheme  Time-fractional Diffusion Equation  Variable-order  
HEAT KERNEL ESTIMATES FOR DIRICHLET FRACTIONAL LAPLACIAN WITH GRADIENT PERTURBATION Journal article
Chen, Peng, Song, Renming, Xie, Longjie, Xie, Yingchao. HEAT KERNEL ESTIMATES FOR DIRICHLET FRACTIONAL LAPLACIAN WITH GRADIENT PERTURBATION[J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56(1), 91-111.
Authors:  Chen, Peng;  Song, Renming;  Xie, Longjie;  Xie, Yingchao
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:0.7/0.7 | Submit date:2019/01/17
Isotropic Stable Process  Fractional Laplacian  Dirichlet Heat Kernel  Kato Class  Gradient Estimate  
Unconditional Convergence in Maximum-Norm of a Second-Order Linearized Scheme for a Time-Fractional Burgers-Type Equation Journal article
Vong, Seakweng, Lyu, Pin. Unconditional Convergence in Maximum-Norm of a Second-Order Linearized Scheme for a Time-Fractional Burgers-Type Equation[J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76(2), 1252-1273.
Authors:  Vong, Seakweng;  Lyu, Pin
Favorite | TC[WOS]:26 TC[Scopus]:26  IF:2.8/2.7 | Submit date:2018/10/30
Time-fractional Burgers Equation  Second-order Linearized Scheme  Unconditionally Convergent And Stable  Maximum-norm Estimate  
Estimating spot volatility in the presence of infinite variation jumps Journal article
Liu, Qiang, Liu, Yiqi, Liu, Zhi. Estimating spot volatility in the presence of infinite variation jumps[J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128(6), 1958-1987.
Authors:  Liu, Qiang;  Liu, Yiqi;  Liu, Zhi
Favorite | TC[WOS]:11 TC[Scopus]:11  IF:1.1/1.4 | Submit date:2018/10/30
Semi-martingale  High Frequency Data  Spot Volatility  Kernel Estimate  Central Limit Theorem  
Efficient estimation of spot volatility with presence of infinite variation jumps Journal article
Liu, Q., Liu, Y., Liu, Z.. Efficient estimation of spot volatility with presence of infinite variation jumps[J]. Stochastic Processes and their Applications, 2018, 1958-1987.
Authors:  Liu, Q.;  Liu, Y.;  Liu, Z.
Favorite | TC[WOS]:11 TC[Scopus]:11  IF:1.1/1.4 | Submit date:2022/07/27
Semi-martingale  High Frequency Data  Spot Volatility  Kernel Estimate  Central Limit Theorem  
Estimation of spot volatility with superposed noisy data Journal article
Liu, Qiang, Liu, Yiqi, Liu, Zhi, Wang, Li. Estimation of spot volatility with superposed noisy data[J]. NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2018, 44, 62-79.
Authors:  Liu, Qiang;  Liu, Yiqi;  Liu, Zhi;  Wang, Li
Favorite | TC[WOS]:4 TC[Scopus]:3  IF:3.8/3.4 | Submit date:2018/10/30
High Frequency Financial Data  Spot Volatility  Range-based Estimation  Kernel Estimate  Multiple Records  Microstructure Noise  Central Limit Theorem