UM

Browse/Search Results:  1-10 of 21 Help

Selected(0)Clear Items/Page:    Sort:
Empirical validation of task-related component analysis reformulation for computational complexity reduction Journal article
Chiang, Kuan Jung, Wong, Chi Man, Wan, Feng, Jung, Tzyy Ping, Nakanishi, Masaki. Empirical validation of task-related component analysis reformulation for computational complexity reduction[J]. Biomedical Signal Processing and Control, 2023, 86.
Authors:  Chiang, Kuan Jung;  Wong, Chi Man;  Wan, Feng;  Jung, Tzyy Ping;  Nakanishi, Masaki
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:4.9/4.9 | Submit date:2024/01/10
Biomedical data analysis  Electroencephalogram  Functional near-infrared spectroscopy  Generalized eigenvalue problem  Task-related component analysis  
Empirical validation of task-related component analysis reformulation for computational complexity reduction Other
2023-07-10
Authors:  Chiang,Kuan Jung;  Wong,Chi Man;  Wan,Feng;  Jung,Tzyy Ping;  Nakanishi,Masaki
Favorite | TC[WOS]:2 TC[Scopus]:3 | Submit date:2023/08/03
Biomedical Data Analysis  Electroencephalogram  Functional Near-infrared Spectroscopy  Generalized Eigenvalue Problem  Task-related Component Analysis  
A Riemannian inexact Newton dogleg method for constructing a symmetric nonnegative matrix with prescribed spectrum Journal article
Zhao, Zhi, Yao, Teng Teng, Bai, Zheng Jian, Jin, Xiao Qing. A Riemannian inexact Newton dogleg method for constructing a symmetric nonnegative matrix with prescribed spectrum[J]. Numerical Algorithms, 2022, 92, 1951–1981.
Authors:  Zhao, Zhi;  Yao, Teng Teng;  Bai, Zheng Jian;  Jin, Xiao Qing
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.7/1.9 | Submit date:2023/01/30
Symmetric Nonnegative Inverse Eigenvalue Problem  Underdetermined Equation  Riemannian Newton Dogleg Method  Preconditioner  
The Riemannian two-step perturbed Gauss–Newton method for least squares inverse eigenvalue problems Journal article
Zhao, Zhi, Jin, Xiao Qing, Yao, Teng Teng. The Riemannian two-step perturbed Gauss–Newton method for least squares inverse eigenvalue problems[J]. Journal of Computational and Applied Mathematics, 2022, 405, 113971.
Authors:  Zhao, Zhi;  Jin, Xiao Qing;  Yao, Teng Teng
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.1/2.1 | Submit date:2022/05/13
Nonlinear Least Squares Problem  Parameterized Least Squares Inverse Eigenvalue Problem  Two-step Perturbed Gauss–newton Method  
Spatial Filtering in SSVEP-Based BCIs: Unified Framework and New Improvements Journal article
Wong,Chi Man, Wang,Boyu, Wang,Ze, Lao,Ka Fai, Rosa,Agostinho, Wan,Feng. Spatial Filtering in SSVEP-Based BCIs: Unified Framework and New Improvements[J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67(11), 3057-3072.
Authors:  Wong,Chi Man;  Wang,Boyu;  Wang,Ze;  Lao,Ka Fai;  Rosa,Agostinho; et al.
Favorite | TC[WOS]:65 TC[Scopus]:87  IF:4.4/4.8 | Submit date:2021/03/11
Generalized Eigenvalue Problem  Spatial Filter  Ssvep-based Bci  Unified Framework  
Common Spatial Pattern Reformulated for Regularizations in Brain-Computer Interfaces Journal article
Wang, Boyu, Wong, Chi Man, Kang, Zhao, Liu, Feng, Shui, Changjian, Wan, Feng, Chen, C. L.Philip. Common Spatial Pattern Reformulated for Regularizations in Brain-Computer Interfaces[J]. IEEE Transactions on Cybernetics, 2020, 51(10), 5008-5020.
Authors:  Wang, Boyu;  Wong, Chi Man;  Kang, Zhao;  Liu, Feng;  Shui, Changjian; et al.
Favorite | TC[WOS]:38 TC[Scopus]:36  IF:9.4/10.3 | Submit date:2021/12/08
Brain-computer Interface (Bci)  Common Spatial Pattern (Csp)  Generalized Eigenvalue Problem (Gep)  Least Squares  Multitask Learning  Singular Value Decomposition (Svd)  Sparse Learning  Transfer Learning  
A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems Journal article
Wen,Chao Tao, Chen,Xiao Shan, Sun,Hai Wei. A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems[J]. Linear Algebra and Its Applications, 2020, 585, 241-262.
Authors:  Wen,Chao Tao;  Chen,Xiao Shan;  Sun,Hai Wei
Favorite | TC[WOS]:9 TC[Scopus]:8  IF:1.0/1.1 | Submit date:2021/03/09
Chebyshev Method  Cubical Convergence  Inexact Newton-like Method  Inverse Eigenvalue Problem  Two-step  
A geometric Gauss–Newton method for least squares inverse eigenvalue problems Journal article
Yao,Teng Teng, Bai,Zheng Jian, Jin,Xiao Qing, Zhao,Zhi. A geometric Gauss–Newton method for least squares inverse eigenvalue problems[J]. BIT Numerical Mathematics, 2020, 60(3), 825-852.
Authors:  Yao,Teng Teng;  Bai,Zheng Jian;  Jin,Xiao Qing;  Zhao,Zhi
Favorite | TC[WOS]:7 TC[Scopus]:8  IF:1.6/1.8 | Submit date:2021/03/09
Geometric Gauss–newton Method  Parameterized Least Squares Inverse Eigenvalue Problem  Preconditioner  
A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems Journal article
Wen, C.T., Chen, X.S., Sun, H. W.. A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems[J]. Linear Algegra and its Applications, 2020, 241-262.
Authors:  Wen, C.T.;  Chen, X.S.;  Sun, H. W.
Favorite | TC[WOS]:9 TC[Scopus]:8  IF:1.0/1.1 | Submit date:2022/07/25
Inverse Eigenvalue Problem  Two-step  Inexact Newton-like Method  Chebyshev Method  Cubical Convergence  
Some recent developments in matrix analysis and computation Conference paper
Jin, X. Q., Vong, S. W., Xie, Z. J., Zhao, Z.. Some recent developments in matrix analysis and computation[C], 2019.
Authors:  Jin, X. Q.;  Vong, S. W.;  Xie, Z. J.;  Zhao, Z.
Favorite |  | Submit date:2022/07/26
Preconditioner  Toeplitz tensor  commutator  norm inequality  stochastic inverse eigenvalue problem  Riemannian optimization