UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
On the variation of the spectrum of a Hermitian matrix Journal article
Li, Wen, Vong, Seak-Weng. On the variation of the spectrum of a Hermitian matrix[J]. APPLIED MATHEMATICS LETTERS, 2017, 65, 70-76.
Authors:  Li, Wen;  Vong, Seak-Weng
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:2.9/2.6 | Submit date:2018/10/30
Hermitian Matrix  Eigenvalue  Perturbation  
On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices Journal article
Li,Wen, Vong,Seak Weng, Peng,Xiao Fei. On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices[J]. Applied Numerical Mathematics, 2014, 83, 38-50.
Authors:  Li,Wen;  Vong,Seak Weng;  Peng,Xiao Fei
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:2.2/2.3 | Submit date:2021/03/09
Eigenvalue Perturbation  Hermitian Block Tridiagonal Matrices  Saddle Point Matrices  Weyl's Bound  
On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices Journal article
Li W., Vong S.-W., Peng X.-F.. On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices[J]. Applied Numerical Mathematics, 2014, 83, 38-50.
Authors:  Li W.;  Vong S.-W.;  Peng X.-F.
Favorite | TC[WOS]:2 TC[Scopus]:3 | Submit date:2018/12/24
Eigenvalue Perturbation  Hermitian Block Tridiagonal Matrices  Saddle Point Matrices  Weyl's Bound