UM

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Empirical likelihood ratio under infinite covariance matrix of the random vectors Journal article
Cheng,Conghua, Liu,Zhi. Empirical likelihood ratio under infinite covariance matrix of the random vectors[J]. Communications in Statistics - Theory and Methods, 2021, 50(18), 4300-4307.
Authors:  Cheng,Conghua;  Liu,Zhi
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:0.6/0.8 | Submit date:2021/03/11
Confidence Region  Empirical Likelihood  Infinite Covariance Matrix  Domain Of Attraction Of Normal Law  
Approximation of stable law in Wasserstein-1 distance by Stein’s method1 Journal article
Xu,Lihu. Approximation of stable law in Wasserstein-1 distance by Stein’s method1[J]. Annals of Applied Probability, 2019, 29(1), 458-504.
Authors:  Xu,Lihu
Favorite | TC[WOS]:20 TC[Scopus]:20  IF:1.4/1.9 | Submit date:2021/03/11
L1 Discrepancy  Normal Domain Of Attraction Of Stable Law  Stable Approximation  Stein’s Method  Wasserstein-1 Distance (W1 Distance)  Α-stable Processes  
Empirical likelihood ratio under infinite second moment Journal article
Cheng, Conghua, Liu, Yiming, Liu, Zhi. Empirical likelihood ratio under infinite second moment[J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46(14), 6909-6915.
Authors:  Cheng, Conghua;  Liu, Yiming;  Liu, Zhi
Favorite | TC[WOS]:2 TC[Scopus]:4  IF:0.6/0.8 | Submit date:2018/10/30
Confidence Interval  Domain Of Attraction Of Normal Law  Empirical Likelihood  Infinite Variance  62b05  62g30  
Empirical likelihood for compound Poisson processes under infinite second moment Journal article
Cheng, Conghua, Liu, Zhi, Wan, Yi. Empirical likelihood for compound Poisson processes under infinite second moment[J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46(17), 8618-8627.
Authors:  Cheng, Conghua;  Liu, Zhi;  Wan, Yi
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:0.6/0.8 | Submit date:2018/10/30
Compound Poisson Process  Domain Of Attraction Of Normal Law  Empirical Likelihood  
Guaranteed attractivity of equilibrium points in a class of delayed neural networks Journal article
Yang X., Liao X., Tang Y., Evans D.J.. Guaranteed attractivity of equilibrium points in a class of delayed neural networks[J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16(9), 2737-2743.
Authors:  Yang X.;  Liao X.;  Tang Y.;  Evans D.J.
Favorite | TC[WOS]:8 TC[Scopus]:9  IF:1.9/2.0 | Submit date:2019/02/11
Delayed Neural Network  Domain Of Attraction  Equilibrium Point  Local Exponential Stability  Lyapunov-krasovskii Functional