UM

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
Numerical Study of a Fast Two-Level Strang Splitting Method for Spatial Fractional Allen–Cahn Equations Journal article
Cai, Yao Yuan, Sun, Hai Wei, Tam, Sik Chung. Numerical Study of a Fast Two-Level Strang Splitting Method for Spatial Fractional Allen–Cahn Equations[J]. Journal of Scientific Computing, 2023, 95(3).
Authors:  Cai, Yao Yuan;  Sun, Hai Wei;  Tam, Sik Chung
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.8/2.7 | Submit date:2024/01/02
Altered two-level Strang splitting method  Circulant and skew-circulant matrix  Discrete maximum principle  Fast Fourier transform  Modified energy decay  
Numerical Study of a Fast Two-Level Strang Splitting Method for Spatial Fractional Allen–Cahn Equations Review article
2023
Authors:  Cai, Yao Yuan;  Sun, Hai Wei;  Tam, Sik Chung
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.8/2.7 | Submit date:2023/07/20
Altered Two-level Strang Splitting Method  Circulant And skew-Circulant Matrix  Discrete Maximum Principle  Fast Fourier Transform  Modified Energy Decay  
A Fast Two-Level Strang Splitting Method for Multi-Dimensional Spatial Fractional Allen-Cahn Equations with Discrete Maximum Principle Journal article
Cai, Yao Yuan, Fang, Zhi Wei, Chen, Hao, Sun, Hai Wei. A Fast Two-Level Strang Splitting Method for Multi-Dimensional Spatial Fractional Allen-Cahn Equations with Discrete Maximum Principle[J]. East Asian Journal on Applied Mathematics, 2023, 13(2), 340-360.
Authors:  Cai, Yao Yuan;  Fang, Zhi Wei;  Chen, Hao;  Sun, Hai Wei
Favorite | TC[WOS]:3 TC[Scopus]:4  IF:1.2/1.0 | Submit date:2023/10/30
Circulant And skew-Circulant Matrix Splitting  Discrete Maximum Principle  Fast Fourier Transform  Two-level Strang Splitting Method  
A Sixth-Order Quasi-Compact Difference Scheme for Multidimensional Poisson Equations Without Derivatives of Source Term Journal article
Sun, Tao, Wang, Zhi, Sun, Hai Wei, Zhang, Chengjian. A Sixth-Order Quasi-Compact Difference Scheme for Multidimensional Poisson Equations Without Derivatives of Source Term[J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93(2), 45(2022).
Authors:  Sun, Tao;  Wang, Zhi;  Sun, Hai Wei;  Zhang, Chengjian
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:2.8/2.7 | Submit date:2022/12/01
Discrete Maximum Principle  Global Sixth-order Accuracy  Poisson Equations  Quasi-compact Difference Scheme  
Second-order maximum principle preserving Strang's splitting schemes for anisotropic fractional Allen-Cahn equations Journal article
Chen, H., Sun, H. W.. Second-order maximum principle preserving Strang's splitting schemes for anisotropic fractional Allen-Cahn equations[J]. Numerical Algorithms, 2022.
Authors:  Chen, H.;  Sun, H. W.
Favorite | TC[WOS]:10 TC[Scopus]:7 | Submit date:2022/07/25
Fractional Allen-cahn Equation  Discrete Maximum Principle  Operator Splitting Method  Matrix Exponential  Toeplitz Matrix  
Second-order maximum principle preserving Strang’s splitting schemes for anisotropic fractional Allen-Cahn equations Journal article
Chen, Hao, Sun, Hai Wei. Second-order maximum principle preserving Strang’s splitting schemes for anisotropic fractional Allen-Cahn equations[J]. Numerical Algorithms, 2021, 90(2), 749-771.
Authors:  Chen, Hao;  Sun, Hai Wei
Favorite | TC[WOS]:10 TC[Scopus]:7  IF:1.7/1.9 | Submit date:2022/05/13
Discrete Maximum Principle  Fractional Allen-cahn Equation  Matrix Exponential  Operator Splitting Method  Toeplitz Matrix  
A Dimensional Splitting Exponential Time Differencing Scheme for Multidimensional Fractional Allen-Cahn Equations Journal article
Chen, Hao, Sun, Hai Wei. A Dimensional Splitting Exponential Time Differencing Scheme for Multidimensional Fractional Allen-Cahn Equations[J]. Journal of Scientific Computing, 2021, 87(1), 30.
Authors:  Chen, Hao;  Sun, Hai Wei
Favorite | TC[WOS]:14 TC[Scopus]:13  IF:2.8/2.7 | Submit date:2021/12/07
Dimensional Splitting  Discrete Maximum Principle  Exponential Time Differencing  Fractional Allen-cahn Equation  Matrix Exponential  Toeplitz Matrix  65f10  65l05  65n22  65f15  
Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations Journal article
Liao, Hong-lin, Lyu, Pin, Vong, Seakweng, Zhao, Ying. Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations[J]. NUMERICAL ALGORITHMS, 2017, 75(4), 845-878.
Authors:  Liao, Hong-lin;  Lyu, Pin;  Vong, Seakweng;  Zhao, Ying
Favorite | TC[WOS]:24 TC[Scopus]:24  IF:1.7/1.9 | Submit date:2018/10/30
Fractional Subdiffusion Equations  Caputo Derivative  Caputo's Bdf Formulas  Minimum-maximum Principle  Discrete Energy Method  Stability And Convergence