UM

Browse/Search Results:  1-10 of 22 Help

Selected(0)Clear Items/Page:    Sort:
Robust Discriminative t-Linear Subspace Learning for Image Feature Extraction Journal article
Liu, Kangdao, Xiao, Xiaolin, You, Jinkun, Zhou, Yicong. Robust Discriminative t-Linear Subspace Learning for Image Feature Extraction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(8), 7315-7327.
Authors:  Liu, Kangdao;  Xiao, Xiaolin;  You, Jinkun;  Zhou, Yicong
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:8.3/7.1 | Submit date:2024/05/16
Dimensionality Reduction  Image Feature Extraction  Subspace Learning  T-product  
Granular ball-based label enhancement for dimensionality reduction in multi-label data Journal article
Wenbin Qian, Wenyong Ruan, Yihui Li, Jintao Huang. Granular ball-based label enhancement for dimensionality reduction in multi-label data[J]. Applied Intelligence, 2023, 53(20), 24008–24033.
Authors:  Wenbin Qian;  Wenyong Ruan;  Yihui Li;  Jintao Huang
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:3.4/3.9 | Submit date:2023/08/03
Dimensionality Reduction  Granular Computing  Label Enhancement  Linear Discriminant Analysis  Multi-label Data  
A survey on multi-label feature selection from perspectives of label fusion Journal article
Qian, Wenbin, Huang, Jintao, Xu, Fankang, Shu, Wenhao, Ding, Weiping. A survey on multi-label feature selection from perspectives of label fusion[J]. Information Fusion, 2023, 100, 101948.
Authors:  Qian, Wenbin;  Huang, Jintao;  Xu, Fankang;  Shu, Wenhao;  Ding, Weiping
Favorite | TC[WOS]:17 TC[Scopus]:19  IF:14.7/16.1 | Submit date:2023/09/21
Dimensionality Reduction  Label Correlation  Label Enhancement  Label Fusion  Multi-label Feature Selection  Multi-label Learning  
Spectral-Spatial Feature Extraction With Dual Graph Autoencoder for Hyperspectral Image Clustering Journal article
Zhang, Yongshan, Wang, Yang, Chen, Xiaohong, Jiang, Xinwei, Zhou, Yicong. Spectral-Spatial Feature Extraction With Dual Graph Autoencoder for Hyperspectral Image Clustering[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32(12), 8500-8511.
Authors:  Zhang, Yongshan;  Wang, Yang;  Chen, Xiaohong;  Jiang, Xinwei;  Zhou, Yicong
Favorite | TC[WOS]:28 TC[Scopus]:35  IF:8.3/7.1 | Submit date:2023/01/30
Autoencoder  Dimensionality Reduction  Feature Extraction  Graph Convolution  Hyperspectral Imagery  
Locality preserving projection with symmetric graph embedding for unsupervised dimensionality reduction Journal article
Lu, Xiaohuan, Long, Jiang, Wen, Jie, Fei, Lunke, Zhang, Bob, Xu, Yong. Locality preserving projection with symmetric graph embedding for unsupervised dimensionality reduction[J]. PATTERN RECOGNITION, 2022, 131, 108844.
Authors:  Lu, Xiaohuan;  Long, Jiang;  Wen, Jie;  Fei, Lunke;  Zhang, Bob; et al.
Favorite | TC[WOS]:27 TC[Scopus]:28  IF:7.5/7.6 | Submit date:2022/08/02
Dimensionality Reduction  Feature Extraction  Graph Embedding  Unsupervised Learning  
Summation pollution of principal component analysis and an improved algorithm for location sensitive data Journal article
Li, Jingwei, Cai, Xiao Chuan. Summation pollution of principal component analysis and an improved algorithm for location sensitive data[J]. Numerical Linear Algebra with Applications, 2021, 28(5), e2370.
Authors:  Li, Jingwei;  Cai, Xiao Chuan
Favorite | TC[WOS]:4 TC[Scopus]:5  IF:1.8/1.8 | Submit date:2021/12/08
Dimensionality Reduction  Domain Decomposition  Image Recognition  Parallel Computing  Principle Component Analysis  Subspace Optimization  
Principal Component Analysis on Graph-Hessian Conference paper
Pan, Yichen, Zhou, Yicong, Liu, Weifeng, Nie, Liqiang. Principal Component Analysis on Graph-Hessian[C], 2019, 1494-1501.
Authors:  Pan, Yichen;  Zhou, Yicong;  Liu, Weifeng;  Nie, Liqiang
Favorite | TC[WOS]:3 TC[Scopus]:3 | Submit date:2022/05/17
Dimensionality Reduction  Graph  Hessian Regularization  Manifold Learning  Principal Component Analysis  
Distribution preserving learning for unsupervised feature selection Journal article
Ting Xie, Pengfei Ren, Taiping Zhang, Yuan Yan Tang. Distribution preserving learning for unsupervised feature selection[J]. Neurocomputing, 2018, 289, 231-240.
Authors:  Ting Xie;  Pengfei Ren;  Taiping Zhang;  Yuan Yan Tang
Favorite | TC[WOS]:11 TC[Scopus]:12  IF:5.5/5.5 | Submit date:2018/10/30
Feature Selection  Density Preserving  Kernel Density Estimation  Dimensionality Reduction  Data Mining  
Robust constrained concept factorization Book chapter
出自: Studies in Computational Intelligence:SPRINGER-VERLAG BERLINHEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY, 2018, 页码:207-225
Authors:  Yan,Wei;  Zhang,Bob
Favorite | TC[WOS]:2 TC[Scopus]:2 | Submit date:2021/03/11
Clustering  Concept Factorization  Dimensionality Reduction  
Learning the distribution of data for embedding Conference paper
Shen Y., Ren P., Zhang T., Tang Y.Y.. Learning the distribution of data for embedding[C], 2017, 46-51.
Authors:  Shen Y.;  Ren P.;  Zhang T.;  Tang Y.Y.
Favorite | TC[WOS]:1 TC[Scopus]:1 | Submit date:2019/02/11
Dimensionality Reduction  Distribution Preserving Embedding  Kernel Density Estimation