UM

Browse/Search Results:  1-10 of 20 Help

Selected(0)Clear Items/Page:    Sort:
OA-Pose: Occlusion-aware monocular 6-DoF object pose estimation under geometry alignment for robot manipulation Journal article
Wang, Jikun, Luo, Luqing, Liang, Weixiang, Yang, Zhi Xin. OA-Pose: Occlusion-aware monocular 6-DoF object pose estimation under geometry alignment for robot manipulation[J]. Pattern Recognition, 2024, 154, 110576.
Authors:  Wang, Jikun;  Luo, Luqing;  Liang, Weixiang;  Yang, Zhi Xin
Favorite | TC[Scopus]:3  IF:7.5/7.6 | Submit date:2024/06/05
Deep Learning  Dense Correspondence  Object Pose Estimation  Occlusion Scene  Robot Manipulation  
TES-CVIDS: A Transmission Efficient Sub-Map Based Collaborative Dense VI-SLAM Framework Journal article
Zhang, Tianjun, Zhang, Lin, Zhang, Fengyi, Zhao, Shengjie, Zhou, Yicong. TES-CVIDS: A Transmission Efficient Sub-Map Based Collaborative Dense VI-SLAM Framework[J]. IEEE Transactions on Intelligent Vehicles, 2024, 1-14.
Authors:  Zhang, Tianjun;  Zhang, Lin;  Zhang, Fengyi;  Zhao, Shengjie;  Zhou, Yicong
Favorite | TC[Scopus]:1  IF:14.0/11.2 | Submit date:2024/05/16
Multi-agent,  Transmission Efficient  Dense Mapping  Visual-inertial Odometry  
Dense Top-View Semantic Completion with Sparse Guidance and Online Distillation Journal article
Gu, Shuo, Lu, Jiacheng, Yang, Jian, Xu, Chengzhong, Kong, Hui. Dense Top-View Semantic Completion with Sparse Guidance and Online Distillation[J]. IEEE Transactions on Intelligent Vehicles, 2023, 9(1), 481 - 491.
Authors:  Gu, Shuo;  Lu, Jiacheng;  Yang, Jian;  Xu, Chengzhong;  Kong, Hui
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:14.0/11.2 | Submit date:2023/07/30
Computational Modeling  Convolution  Dense Top-view  Laser Radar  Online Distillation  Semantic Completion  Semantic Segmentation  Semantics  Sparse Guidance  Task Analysis  Three-dimensional Displays  
Sparse-to-Dense Matching Network for Large-scale LiDAR Point Cloud Registration Journal article
Lu,Fan, Chen,Guang, Liu,Yinlong, Zhan,Yibing, Li,Zhijun, Tao,Dacheng, Jiang,Changjun. Sparse-to-Dense Matching Network for Large-scale LiDAR Point Cloud Registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9), 11270-11282.
Authors:  Lu,Fan;  Chen,Guang;  Liu,Yinlong;  Zhan,Yibing;  Li,Zhijun; et al.
Favorite | TC[WOS]:9 TC[Scopus]:12  IF:20.8/22.2 | Submit date:2023/08/03
Cloud Computing  Correspondence  Feature Extraction  Feature Matching  Filtering  Laser Radar  Lidar  Optimal Transport  Pipelines  Point Cloud Compression  Point Cloud Registration  Rigid  Sparse-to-dense  Three-dimensional Displays  
Beam Management in Ultra-dense mmWave Network via Federated Reinforcement Learning: An Intelligent and Secure Approach Journal article
Qing Xue, Yi-Jing Liu, Yao Sun, Wang, Jian, Li Yan, Gang Feng, Shaodan Ma. Beam Management in Ultra-dense mmWave Network via Federated Reinforcement Learning: An Intelligent and Secure Approach[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 9(1), 185-197.
Authors:  Qing Xue;  Yi-Jing Liu;  Yao Sun;  Wang, Jian;  Li Yan; et al.
Favorite | TC[WOS]:34 TC[Scopus]:44  IF:7.4/6.9 | Submit date:2023/01/30
Beam Management  Millimeter Wave (mmWave) Communication  Ultra-dense Network  Federated Reinforcement Learning  
CVIDS: A Collaborative Localization and Dense Mapping Framework for Multi-Agent Based Visual-Inertial SLAM Journal article
Zhang, Tianjun, Zhang, Lin, Chen, Yang, Zhou, Yicong. CVIDS: A Collaborative Localization and Dense Mapping Framework for Multi-Agent Based Visual-Inertial SLAM[J]. IEEE Transactions on Image Processing, 2022, 31, 6562-6576.
Authors:  Zhang, Tianjun;  Zhang, Lin;  Chen, Yang;  Zhou, Yicong
Favorite | TC[WOS]:8 TC[Scopus]:10  IF:10.8/12.1 | Submit date:2023/01/30
Dense Mapping  Monocular Camera Suite  Multi-agent  Visual-inertial Odometry  
DSD-MatchingNet: Deformable Sparse-to-Dense Feature Matching for Learning Accurate Correspondences Journal article
Zhao, Yicheng, Zhang, Han, Lu, Ping, Li, Ping, Wu, Enhua, Sheng, Bin. DSD-MatchingNet: Deformable Sparse-to-Dense Feature Matching for Learning Accurate Correspondences[J]. Virtual Reality and Intelligent Hardware, 2022, 4(5), 432-443.
Authors:  Zhao, Yicheng;  Zhang, Han;  Lu, Ping;  Li, Ping;  Wu, Enhua; et al.
Favorite | TC[Scopus]:5
A Principled Design of Image Representation: Towards Forensic Tasks Journal article
Shuren Qi, Yushu Zhang, Chao Wang, Jiantao Zhou, Xiaochun Cao. A Principled Design of Image Representation: Towards Forensic Tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(5), 5337-5354.
Authors:  Shuren Qi;  Yushu Zhang;  Chao Wang;  Jiantao Zhou;  Xiaochun Cao
Favorite | TC[WOS]:9 TC[Scopus]:10  IF:20.8/22.2 | Submit date:2022/09/14
Dense Invariant Representation  Image Forensics  Orthogonal Moments  Covariance  Fast Fourier Transform  
User-Centric Association in Ultra-Dense mmWave Networks via Deep Reinforcement Learning Journal article
Xue, Qing, Sun, Yao, Wang, Jian, Feng, Gang, Yan, Li, Ma, Shaodan. User-Centric Association in Ultra-Dense mmWave Networks via Deep Reinforcement Learning[J]. IEEE Communications Letters, 2021, 25(11), 3594-3598.
Authors:  ; et al.
Favorite | TC[WOS]:15 TC[Scopus]:18  IF:3.7/3.5 | Submit date:2021/12/08
Deep Learning  Multiple Association  Ultra-dense Mmwave Network  User-centric  
An End-to-End Dense-InceptionNet for Image Copy-Move Forgery Detection Presentation
会议地点: 46th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 报告日期: 2021-05-01
Authors:  J.-L. Zhong;  C.-M. Pun
Favorite | TC[WOS]:88 TC[Scopus]:125 | Submit date:2022/08/26
Copy-move Forgery Detection  Deep Neural Network  Dense-inceptionnet