UM

Browse/Search Results:  1-9 of 9 Help

Selected(0)Clear Items/Page:    Sort:
A Novel Pre-processing Method for Enhancing Classification Over Sensor Data Streams Using Subspace Probability Detection Conference paper
Zhong, Yan, Li, Tengyue, Fong, Simon, Li, Xuqi, Tallón-Ballesteros, Antonio J., Mohammed, Sabah. A Novel Pre-processing Method for Enhancing Classification Over Sensor Data Streams Using Subspace Probability Detection[C]. Sanjurjo González H., Pastor López I., García Bringas P., Quintián H., Corchado E., Switzerland:Springer Science and Business Media Deutschland GmbH, 2021, 38-49.
Authors:  Zhong, Yan;  Li, Tengyue;  Fong, Simon;  Li, Xuqi;  Tallón-Ballesteros, Antonio J.; et al.
Favorite | TC[Scopus]:0 | Submit date:2022/05/13
Internet-of-things  Data Pre-processing  Sensor Data Streams  Big Data Analytics  
FastThetaJoin: An Optimization on Multi-way Data Stream θ-join with Range Constraints Conference paper
Ziyue Hu, Xiaopeng Fan, Yang Wang, Chengzhong Xu. FastThetaJoin: An Optimization on Multi-way Data Stream θ-join with Range Constraints[C], 2020.
Authors:  Ziyue Hu;  Xiaopeng Fan;  Yang Wang;  Chengzhong Xu
Favorite | TC[WOS]:1 TC[Scopus]:0 | Submit date:2021/09/18
Θ-join  Theta Join  Multi-way Data Streams  Data Streams  Spark Streaming  
Robust Online Multilabel Learning Under Dynamic Changes in Data Distribution with Labels Journal article
Du, J., Vong, C. M.. Robust Online Multilabel Learning Under Dynamic Changes in Data Distribution with Labels[J]. IEEE Transactions on Cybernetics (SCI-E), 2020, 374-385.
Authors:  Du, J.;  Vong, C. M.
Favorite |   IF:9.4/10.3 | Submit date:2022/08/09
Concept Drift  Dynamic Changes  Multilabel Data Streams  Online Multilabel Learning (Omll)  
Robust Online Multilabel Learning under Dynamic Changes in Data Distribution with Labels Journal article
Du,Jie, Vong,Chi Man. Robust Online Multilabel Learning under Dynamic Changes in Data Distribution with Labels[J]. IEEE Transactions on Cybernetics, 2020, 50(1), 374-385.
Authors:  Du,Jie;  Vong,Chi Man
Favorite | TC[WOS]:19 TC[Scopus]:28  IF:9.4/10.3 | Submit date:2021/03/11
Concept Drift  Dynamic Changes  Multilabel Data Streams  Online Multilabel Learning (Omll)  
A Density-Based Nonparametric Model for Online Event Discovery from the Social Media Data Conference paper
Guo, J., Gong, Z. G.. A Density-Based Nonparametric Model for Online Event Discovery from the Social Media Data[C], 2017.
Authors:  Guo, J.;  Gong, Z. G.
Favorite |  | Submit date:2022/08/26
Learning Graphical Models  Time-series/Data Streams  Approximate Probabilistic Inference  
RLC: ranking lag correlations with flexible sliding windows in data streams Journal article
Wu, Shanshan, Lin, Huaizhong, Wang, Wenxiang, Lu, Dongming, U, Leong Hou, Gao, Yunjun. RLC: ranking lag correlations with flexible sliding windows in data streams[J]. PATTERN ANALYSIS AND APPLICATIONS, 2017, 20(2), 601-611.
Authors:  Wu, Shanshan;  Lin, Huaizhong;  Wang, Wenxiang;  Lu, Dongming;  U, Leong Hou; et al.
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:3.7/2.7 | Submit date:2018/10/30
Lag Correlation  Flexible Sliding Windows  Data Streams  
Discovering sub-patterns from time series using a normalized cross-match algorithm Journal article
Xueyuan Gong, Simon Fong, Raymond K. Wong, Sabah Mohammed, Jinan Fiaidhi, Athanasios V. Vasilakos. Discovering sub-patterns from time series using a normalized cross-match algorithm[J]. Journal of Supercomputing, 2016, 72(10), 3850-3867.
Authors:  Xueyuan Gong;  Simon Fong;  Raymond K. Wong;  Sabah Mohammed;  Jinan Fiaidhi; et al.
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:2.5/2.4 | Submit date:2019/02/13
Pattern Discovery  Crossmatch  Ncm  Data Streams  Time Series  
NSPRING: the SPRING extension for subsequence matching of time series supporting normalization Journal article
Xueyuan Gong, Simon Fong, Jonathan H. Chan, Sabah Mohammed. NSPRING: the SPRING extension for subsequence matching of time series supporting normalization[J]. Journal of Supercomputing, 2015, 72(10), 3801-3825.
Authors:  Xueyuan Gong;  Simon Fong;  Jonathan H. Chan;  Sabah Mohammed
Favorite | TC[WOS]:3 TC[Scopus]:4  IF:2.5/2.4 | Submit date:2019/02/13
Data Streams  Subsequence Matching  Normalization  Spring  Nspring  Ucr-dtw  Dtw  
Performance evaluation of incremental decision tree learning under noisy data streams Journal article
Hang Yang, Simon Fong. Performance evaluation of incremental decision tree learning under noisy data streams[J]. International Journal of Computer Applications in Technology, 2013, 47(2-3), 206-214.
Authors:  Hang Yang;  Simon Fong
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.2/0.9 | Submit date:2019/02/13
Big Data  Data Streams  Classification Models  Decision Trees  Noisy Data  Performance Evaluation  Incremental Learning  Multi–objective Optimisation