×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [4]
Authors
SUN HAIWEI [3]
Document Type
Journal article [4]
Conference paper [1]
Date Issued
2022 [1]
2021 [2]
2011 [1]
2008 [1]
Language
英語English [5]
Source Publication
Journal of Compu... [2]
Applied Numerica... [1]
International Jo... [1]
Proceedings of t... [1]
Indexed By
SCIE [3]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-5 of 5
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
A stabilized fully-discrete scheme for phase field crystal equation
Journal article
Zhang, Fan, Li, Dongfang, Sun, Hai Wei, Zhang, Jia Li. A stabilized fully-discrete scheme for phase field crystal equation[J]. Applied Numerical Mathematics, 2022, 178, 337-355.
Authors:
Zhang, Fan
;
Li, Dongfang
;
Sun, Hai Wei
;
Zhang, Jia Li
Favorite
|
TC[WOS]:
11
TC[Scopus]:
11
IF:
2.2
/
2.3
|
Submit date:2022/05/13
Compact Difference Scheme
Crank-nicolson/adams-bashforth Scheme
Energy Stability
Error Estimate
Phase Field Crystal Equation
A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations
Journal article
Zhang,Qifeng, Zhang,Lu, Sun,Hai wei. A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations[J]. Journal of Computational and Applied Mathematics, 2021, 389, 113355.
Authors:
Zhang,Qifeng
;
Zhang,Lu
;
Sun,Hai wei
Favorite
|
TC[WOS]:
22
TC[Scopus]:
22
IF:
2.1
/
2.1
|
Submit date:2021/03/09
Boundedness
Circulant Preconditioner
Crank–nicolson Scheme
Space Fractional Ginzburg–landau Equation
A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations
Journal article
Zhang, Q. F., Zhang, L., Sun, H. W.. A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations[J]. Journal of Computational and Applied Mathematics, 2021, 113355-113355.
Authors:
Zhang, Q. F.
;
Zhang, L.
;
Sun, H. W.
Favorite
|
TC[WOS]:
22
TC[Scopus]:
22
IF:
2.1
/
2.1
|
Submit date:2022/07/25
Space Fractional Ginzburg-landau Equation
Crank–nicolson Scheme
Boundedness
Circulant Preconditioner
Boundary value methods with the Crank-Nicolson preconditioner for pricing options in the jump-diffusion model
Journal article
Shu-Ling Yang, Spike T. Lee, Hai-Wei Sun. Boundary value methods with the Crank-Nicolson preconditioner for pricing options in the jump-diffusion model[J]. International Journal of Computer Mathematics, 2011, 88(8), 1730-1748.
Authors:
Shu-Ling Yang
;
Spike T. Lee
;
Hai-Wei Sun
Favorite
|
TC[WOS]:
4
TC[Scopus]:
4
|
Submit date:2019/02/13
Boundary Value Method
Crank-nicolson Time-marching Scheme
Fourth-order Compact Scheme
Jump-diffusion
Preconditioner
Toeplitz Matrix
A fourth-order compact BVM scheme for the two-dimensional heat equations
Conference paper
Sun H.-W., Wang W.. A fourth-order compact BVM scheme for the two-dimensional heat equations[C], 2008, 310-314.
Authors:
Sun H.-W.
;
Wang W.
Favorite
|
|
Submit date:2019/02/13
BVMs
Compact difference scheme
Crank-Nicolson
Heat equation
Unconditional stability