×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [4]
Authors
KOU KIT IAN [3]
IU VAI PAN [1]
KOU KUN PANG [1]
Document Type
Journal article [9]
Conference paper [1]
Date Issued
2015 [3]
2013 [6]
2006 [1]
Language
英語English [10]
Source Publication
Computers and Ma... [3]
Mathematical Met... [3]
International Jo... [2]
Analytical and C... [1]
International Jo... [1]
Indexed By
SCIE [5]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 10
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Generalized holornorphic orthogonal fìrnction systenrs over infinite cylinders
Journal article
Morais, J., Kou, K. I., Le, H. T. . Generalized holornorphic orthogonal fìrnction systenrs over infinite cylinders[J]. Mathematical Methods in the Applied Sciences, 2015, 2574-2588.
Authors:
Morais, J.
;
Kou, K. I.
;
Le, H. T.
Favorite
|
|
Submit date:2022/08/27
quaternionic analysis
Bessel functions
Chebyshev polynomials
hyperbolic functions
cylindrical harmonics
generalized cylindrical holomorphics
Generalized holomorphic orthogonal function systems over infinite cylinders
Journal article
Morais,J., Kou,K. I., Le,H. T.. Generalized holomorphic orthogonal function systems over infinite cylinders[J]. Mathematical Methods in the Applied Sciences, 2015, 38(12), 2574-2588.
Authors:
Morais,J.
;
Kou,K. I.
;
Le,H. T.
Favorite
|
TC[WOS]:
1
TC[Scopus]:
3
IF:
2.1
/
2.0
|
Submit date:2021/03/11
Bessel Functions
Chebyshev Polynomials
Cylindrical Harmonics
Generalized Cylindrical Holomorphics
Hyperbolic Functions
Quaternionic Analysis
Generalized holomorphic orthogonal function systems over infinite cylinders
Journal article
Morais J., Kou K.I., Le H.T.. Generalized holomorphic orthogonal function systems over infinite cylinders[J]. Mathematical Methods in the Applied Sciences, 2015, 38(12), 2574-2588.
Authors:
Morais J.
;
Kou K.I.
;
Le H.T.
Favorite
|
TC[WOS]:
1
TC[Scopus]:
3
|
Submit date:2019/02/13
Bessel Functions
Chebyshev Polynomials
Cylindrical Harmonics
Generalized Cylindrical Holomorphics
Hyperbolic Functions
Quaternionic Analysis
On convergence propertiesof 3D spheroidal monogenics
Journal article
Morais, J., Kou, K. I., Georgiev, S.. On convergence propertiesof 3D spheroidal monogenics[J]. International Journal of wavelets multiresolution and information processing, 2013, 1350024-1-1350024-19.
Authors:
Morais, J.
;
Kou, K. I.
;
Georgiev, S.
Favorite
|
IF:
0.9
/
1.1
|
Submit date:2022/08/27
Quaternion analysis
Riesz system
Moisil Theodoresco system
Ferrer's associated Legendre functions
Chebyshev polynomials
hyperbolic functions
monogenic functions.
On convergence properties of 3D spheroidal monogenics
Journal article
Morais J., Kou K.I., Georgiev S.. On convergence properties of 3D spheroidal monogenics[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2013, 11(3).
Authors:
Morais J.
;
Kou K.I.
;
Georgiev S.
Favorite
|
TC[WOS]:
7
TC[Scopus]:
7
|
Submit date:2019/02/13
Quaternion Analysis
Riesz System
Moisil-théodoresco System
Ferrer's Associated Legendre Functions
Chebyshev Polynomials
Hyperbolic Functions
Monogenic Functions
Generalized holomorphic Szego kernel in 3D spheroids
Journal article
Morais, J., Kou, K. I., Sprößig , W.. Generalized holomorphic Szego kernel in 3D spheroids[J]. Computers and Mathematics with Applications, 2013, 576-588.
Authors:
Morais, J.
;
Kou, K. I.
;
Sprößig , W.
Favorite
|
IF:
2.9
/
2.6
|
Submit date:2022/08/27
Quaternion analysis
Ferrer’s associated Legendre functions
Chebyshev polynomials
Hyperbolic functions
Prolate spheroidal monogenics
Szegö kernel function
Generalized holomorphic Szegö kernel in 3D spheroids
Journal article
Morais J., Kou K.I., Sprossig W.. Generalized holomorphic Szegö kernel in 3D spheroids[J]. Computers and Mathematics with Applications, 2013, 65(4), 576-588.
Authors:
Morais J.
;
Kou K.I.
;
Sprossig W.
Favorite
|
TC[WOS]:
14
TC[Scopus]:
16
|
Submit date:2019/02/13
Chebyshev Polynomials
Ferrer's Associated Legendre Functions
Hyperbolic Functions
Prolate Spheroidal Monogenics
Quaternion Analysis
Szegö Kernel Function
On convergence properties of 3D spheroidal monogenics
Journal article
Morais,J., Kou,K. I., Georgiev,S.. On convergence properties of 3D spheroidal monogenics[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2013, 11(3).
Authors:
Morais,J.
;
Kou,K. I.
;
Georgiev,S.
Favorite
|
TC[WOS]:
7
TC[Scopus]:
7
IF:
0.9
/
1.1
|
Submit date:2021/03/11
Chebyshev Polynomials
Ferrer's Associated Legendre Functions
Hyperbolic Functions
Moisil-théodoresco System
Monogenic Functions
Quaternion Analysis
Riesz System
Generalized holomorphic Szegö kernel in 3D spheroids
Journal article
Morais,J., Kou,K. I., Sprößig,W.. Generalized holomorphic Szegö kernel in 3D spheroids[J]. Computers and Mathematics with Applications, 2013, 65(4), 576-588.
Authors:
Morais,J.
;
Kou,K. I.
;
Sprößig,W.
Favorite
|
TC[WOS]:
14
TC[Scopus]:
16
IF:
2.9
/
2.6
|
Submit date:2021/03/11
Chebyshev Polynomials
Ferrer's Associated Legendre Functions
Hyperbolic Functions
Prolate Spheroidal Monogenics
Quaternion Analysis
Szegö Kernel Function
Two-dimensional equations for vibration of piezoelectric plates by using chebyshev polynomial expansions
Conference paper
Li Q., Iu V., Kou K.. Two-dimensional equations for vibration of piezoelectric plates by using chebyshev polynomial expansions[C], 2006, 175-180.
Authors:
Li Q.
;
Iu V.
;
Kou K.
Favorite
|
|
Submit date:2019/02/12
Chebyshev Polynomials
Piezoelectric Plates
Two-dimensional Vibration