×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scie... [19]
Faculty of Healt... [1]
Authors
LIU ZHI [11]
XU LIHU [8]
WANG LI [1]
Document Type
Journal article [24]
Date Issued
2025 [1]
2023 [1]
2022 [2]
2021 [1]
2020 [2]
2019 [1]
More...
Language
英語English [22]
德語German [1]
Source Publication
Communications i... [4]
Journal of Theor... [3]
JOURNAL OF STATI... [2]
Statistical Infe... [2]
Bernoulli [1]
Communication in... [1]
More...
Indexed By
SCIE [16]
SSCI [5]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 24
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
Issue Date Ascending
Issue Date Descending
Submit date Ascending
Submit date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Stable Central Limit Theorem in Total Variation Distance
Journal article
Li, Xiang, Xu, Lihu, Yang, Haoran. Stable Central Limit Theorem in Total Variation Distance[J]. Journal of Theoretical Probability, 2025, 38(1), 16.
Authors:
Li, Xiang
;
Xu, Lihu
;
Yang, Haoran
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
0.8
/
0.7
|
Submit date:2025/01/22
Stable Central Limit Theorem
Total Variation Distance
Optimal Convergence Rate
Measure Decomposition
Backward InductiOn On α
Multivariate Stable Approximation by Stein’s Method
Journal article
Chen,Peng, Nourdin,Ivan, Xu,Lihu, Yang,Xiaochuan. Multivariate Stable Approximation by Stein’s Method[J]. Journal of Theoretical Probability, 2023, 37(1), 446–488.
Authors:
Chen,Peng
;
Nourdin,Ivan
;
Xu,Lihu
;
Yang,Xiaochuan
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
0.8
/
0.7
|
Submit date:2023/08/03
Fractional Laplacian
Generalized Central Limit Theorem
Multivariate Α-stable Approximation
Rate Of Convergence
Stein’s Method
Wasserstein(-type) distance
Statistical Inference for spot correlation and spot market Beta under infinite variation jumps
Journal article
Liu, Q., Liu, Z.. Statistical Inference for spot correlation and spot market Beta under infinite variation jumps[J]. Journal of Financial Econometrics, 2022, 20(4), 612-654.
Authors:
Liu, Q.
;
Liu, Z.
Favorite
|
TC[WOS]:
1
TC[Scopus]:
1
|
Submit date:2022/07/27
Semimartingale
High Frequency Data
Infinite Variation Jump
Spot Covariance
Spot Correlation
Spot Market Beta
Central Limit Theorem
Central limit theorem and self-normalized Cramér-type moderate deviation for Euler-Maruyama scheme
Journal article
Lu, Jianya, Tan, Yuzhen, Xu, Lihu. Central limit theorem and self-normalized Cramér-type moderate deviation for Euler-Maruyama scheme[J]. Bernoulli, 2022, 28(2), 937-964.
Authors:
Lu, Jianya
;
Tan, Yuzhen
;
Xu, Lihu
Favorite
|
TC[WOS]:
6
TC[Scopus]:
6
IF:
1.5
/
1.6
|
Submit date:2022/05/13
Central Limit Theorem
Euler-maruyama Scheme
Self-normalized Cramér-type Moderate Deviation
Stein’s Method
Stochastic Differential Equation
Non-integrable Stable Approximation by Stein’s Method
Journal article
Chen, Peng, Nourdin, Ivan, Xu, Lihu, Yang, Xiaochuan, Zhang, Rui. Non-integrable Stable Approximation by Stein’s Method[J]. JOURNAL OF THEORETICAL PROBABILITY, 2021, 35(2), 1137-1186.
Authors:
Chen, Peng
;
Nourdin, Ivan
;
Xu, Lihu
;
Yang, Xiaochuan
;
Zhang, Rui
Favorite
|
TC[WOS]:
10
TC[Scopus]:
10
IF:
0.8
/
0.7
|
Submit date:2022/05/13
Α-stable Approximation
Generalized Central Limit Theorem
Stein’s Method
Edgeworth corrections for spot volatility estimator
Journal article
He,Lidan, Liu,Qiang, Liu,Zhi. Edgeworth corrections for spot volatility estimator[J]. Statistics and Probability Letters, 2020, 164.
Authors:
He,Lidan
;
Liu,Qiang
;
Liu,Zhi
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
0.9
/
0.8
|
Submit date:2021/03/11
Central Limit Theorem
Confidence Interval
Edgeworth Expansion
High Frequency Data
Spot Volatility
Stein’s Method for Asymmetric α -stable Distributions, with Application to the Stable CLT
Journal article
Chen,Peng, Nourdin,Ivan, Xu,Lihu. Stein’s Method for Asymmetric α -stable Distributions, with Application to the Stable CLT[J]. Journal of Theoretical Probability, 2020, 34(3), 1382-1407.
Authors:
Chen,Peng
;
Nourdin,Ivan
;
Xu,Lihu
Favorite
|
TC[WOS]:
9
TC[Scopus]:
10
IF:
0.8
/
0.7
|
Submit date:2021/03/11
Asymmetric Α-stable Distribution
Fractional Laplacian
Leave-one-out Approach
Normal Attraction
Stable Central Limit Theorem
Stein’s Method
Approximation to stable law by the Lindeberg principle
Journal article
Chen,Peng, Xu,Lihu. Approximation to stable law by the Lindeberg principle[J]. Journal of Mathematical Analysis and Applications, 2019, 480(2), 123338.
Authors:
Chen,Peng
;
Xu,Lihu
Favorite
|
TC[WOS]:
13
TC[Scopus]:
12
IF:
1.2
/
1.3
|
Submit date:2021/03/11
a Kolmogorov Forward Equation
Asymmetric Α-stable Distribution
Stable Central Limit Theorem
The Lindeberg Principle
Estimating spot volatility in the presence of infinite variation jumps
Journal article
Liu, Qiang, Liu, Yiqi, Liu, Zhi. Estimating spot volatility in the presence of infinite variation jumps[J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128(6), 1958-1987.
Authors:
Liu, Qiang
;
Liu, Yiqi
;
Liu, Zhi
Favorite
|
TC[WOS]:
11
TC[Scopus]:
11
IF:
1.1
/
1.4
|
Submit date:2018/10/30
Semi-martingale
High Frequency Data
Spot Volatility
Kernel Estimate
Central Limit Theorem
Estimating the integrated volatility using high-frequency data with zero durations
Journal article
Liu, Zhi, Kong, Xin-Bing, Jing, Bing-Yi. Estimating the integrated volatility using high-frequency data with zero durations[J]. JOURNAL OF ECONOMETRICS, 2018, 204(1), 18-32.
Authors:
Liu, Zhi
;
Kong, Xin-Bing
;
Jing, Bing-Yi
Favorite
|
TC[WOS]:
8
TC[Scopus]:
9
IF:
9.9
/
6.7
|
Submit date:2018/10/30
Ito Semimartingale
High Frequency Data
Multiple Transactions
Realized Power Variations
Microstructure Noise
Central Limit Theorem