UM

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
Global dynamics of a two-species clustering model with Lotka–Volterra competition Journal article
Tao, Weirun, Wang, Zhi An, Yang, Wen. Global dynamics of a two-species clustering model with Lotka–Volterra competition[J]. Nonlinear Differential Equations and Applications, 2024, 31(4), 47.
Authors:  Tao, Weirun;  Wang, Zhi An;  Yang, Wen
Adobe PDF | Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.1/1.2 | Submit date:2024/05/16
Boundedness  Clustering Model  Global Stability  Lotka–volterra Competition  Lyapunov Functional  
Recursive locally minimum-variance filtering for two-dimensional systems: When dynamic quantization effect meets random sensor failure Journal article
Fan Wang, Zidong Wang, Jinling Liang, Carlos Silvestre. Recursive locally minimum-variance filtering for two-dimensional systems: When dynamic quantization effect meets random sensor failure[J]. Automatica, 2022, 148, 110762.
Authors:  Fan Wang;  Zidong Wang;  Jinling Liang;  Carlos Silvestre
Favorite | TC[WOS]:13 TC[Scopus]:14  IF:4.8/6.0 | Submit date:2023/02/22
Two-dimensional Systems  Recursive Filter  Dynamic Quantization  Sensor Failure  Monotonicity  Boundedness  
A fast compact difference method for two-dimensional nonlinear space-fractional complex ginzburg-landau equations Journal article
Zhang, Lu, Zhang, Qifeng, Sun, Hai Wei. A fast compact difference method for two-dimensional nonlinear space-fractional complex ginzburg-landau equations[J]. Journal of Computational Mathematics, 2021, 39(5), 697-721.
Authors:  Zhang, Lu;  Zhang, Qifeng;  Sun, Hai Wei
Favorite | TC[WOS]:3 TC[Scopus]:4  IF:0.9/1.0 | Submit date:2022/05/13
Boundedness  Compact Scheme  Convergence  Fft  Preconditioner  Space-fractional Ginzburg-landau Equation  
A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations Journal article
Zhang,Qifeng, Zhang,Lu, Sun,Hai wei. A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations[J]. Journal of Computational and Applied Mathematics, 2021, 389, 113355.
Authors:  Zhang,Qifeng;  Zhang,Lu;  Sun,Hai wei
Favorite | TC[WOS]:22 TC[Scopus]:22  IF:2.1/2.1 | Submit date:2021/03/09
Boundedness  Circulant Preconditioner  Crank–nicolson Scheme  Space Fractional Ginzburg–landau Equation  
A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations Journal article
Zhang, Q. F., Zhang, L., Sun, H. W.. A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations[J]. Journal of Computational and Applied Mathematics, 2021, 113355-113355.
Authors:  Zhang, Q. F.;  Zhang, L.;  Sun, H. W.
Favorite | TC[WOS]:22 TC[Scopus]:22  IF:2.1/2.1 | Submit date:2022/07/25
Space Fractional Ginzburg-landau Equation  Crank–nicolson Scheme  Boundedness  Circulant Preconditioner  
Robust finite-time boundedness of multi-agent systems subject to parametric uncertainties and disturbances Journal article
Lee,Liming, Kou,Kit Ian, Zhang,Wentao, Liang,Jinling, Liu,Yang. Robust finite-time boundedness of multi-agent systems subject to parametric uncertainties and disturbances[J]. International Journal of Systems Science, 2016, 47(10), 2466-2474.
Authors:  Lee,Liming;  Kou,Kit Ian;  Zhang,Wentao;  Liang,Jinling;  Liu,Yang
Favorite | TC[WOS]:9 TC[Scopus]:10  IF:4.9/3.3 | Submit date:2021/03/11
Impulsive Disturbance  Multi-agent System  Parametric Uncertainty  Robust Finite-time Boundedness  
Robust finite-time boundedness of multi-agent systems subject to parametric uncertainties and disturbances Journal article
Lee L., Kou K.I., Zhang W., Liang J., Liu Y.. Robust finite-time boundedness of multi-agent systems subject to parametric uncertainties and disturbances[J]. International Journal of Systems Science, 2016, 47(10), 2466-2474.
Authors:  Lee L.;  Kou K.I.;  Zhang W.;  Liang J.;  Liu Y.
Favorite | TC[WOS]:9 TC[Scopus]:10 | Submit date:2019/02/13
Impulsive Disturbance  Multi-agent System  Parametric Uncertainty  Robust Finite-time Boundedness  
On reachability graphs of Petri nets Journal article
Ye X., Zhou J., Song X.. On reachability graphs of Petri nets[J]. Computers and Electrical Engineering, 2003, 29(2), 263-272.
Authors:  Ye X.;  Zhou J.;  Song X.
Favorite | TC[WOS]:28 TC[Scopus]:38 | Submit date:2018/12/22
Boundedness  Conservation  Coverability  Liveness  Petri Net  Reachability  Reachability Graph  Reachability Tree  Safeness