UM

Browse/Search Results:  1-6 of 6 Help

Selected(0)Clear Items/Page:    Sort:
Adaptive Fourier decomposition-based Dirac type time-frequency distribution Journal article
Zhang, Liming, Qian, Tao, Mai, Weixiong, Dang, Pei. Adaptive Fourier decomposition-based Dirac type time-frequency distribution[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40(8), 2815-2833.
Authors:  Zhang, Liming;  Qian, Tao;  Mai, Weixiong;  Dang, Pei
Favorite | TC[WOS]:5 TC[Scopus]:7  IF:2.1/2.0 | Submit date:2018/10/30
Instantaneous Frequency  Mono-component  Multi-component  Adaptive Fourier Decomposition  Time-frequency Distribution  The Best N-rational Approximation  
Cyclic AFD algorithm for the best rational approximation Journal article
Qian T.. Cyclic AFD algorithm for the best rational approximation[J]. Mathematical Methods in the Applied Sciences, 2014, 37(6), 846-859.
Authors:  Qian T.
Favorite | TC[WOS]:41 TC[Scopus]:43 | Submit date:2019/02/11
Best Rational Approximation  Blaschke Form  Hardy Space  Maximal Selection Principle  Rational Orthonormal System  
A fast adaptive model reduction method based on Takenaka-Malmquist systems Journal article
Mi W., Qian T., Wan F.. A fast adaptive model reduction method based on Takenaka-Malmquist systems[J]. Systems and Control Letters, 2012, 61(1), 223.
Authors:  Mi W.;  Qian T.;  Wan F.
Favorite | TC[WOS]:56 TC[Scopus]:61  IF:2.1/2.5 | Submit date:2018/10/30
Best Approximation  Impulse Response Energy  Model Order Reduction  Rational Approximation  Takenakamalmquist Basis  
An adaptive method of model reduction in frequency domain Conference paper
Mi W., Qian T.. An adaptive method of model reduction in frequency domain[C], 2011, 110-114.
Authors:  Mi W.;  Qian T.
Favorite | TC[Scopus]:1 | Submit date:2019/02/11
Best Approximation  Model Order Reduction  Rational Approximation  
Nonlinearly Constrained Best Approximation in Hilbert Spaces: The Strong CHIP and the Basic Constraint Qualification Journal article
Chong Li, Xiao-Qing Jin. Nonlinearly Constrained Best Approximation in Hilbert Spaces: The Strong CHIP and the Basic Constraint Qualification[J]. SIAM JOURNAL ON OPTIMIZATION, 2006, 13(1), 228-239.
Authors:  Chong Li;  Xiao-Qing Jin
Favorite | TC[WOS]:32 TC[Scopus]:29  IF:2.6/3.2 | Submit date:2019/07/23
Best Approximation  Strong Chip  Bcq Condition  Differentiable Constraint  Convex Constraint  
Nonlinearly constrained best approximation in Hilbert spaces: The strong chip and the basic constraint qualification Journal article
Li,Chong, Jin,Xiao Qing. Nonlinearly constrained best approximation in Hilbert spaces: The strong chip and the basic constraint qualification[J]. SIAM Journal on Optimization, 2003, 13(1), 228-239.
Authors:  Li,Chong;  Jin,Xiao Qing
Favorite | TC[WOS]:32 TC[Scopus]:29  IF:2.6/3.2 | Submit date:2021/03/09
Bcq Condition  Best Approximation  Convex Constraint  Differentiable Constraint  Strong Chip