UM

Browse/Search Results:  1-9 of 9 Help

Selected(0)Clear Items/Page:    Sort:
Multi-Label Attribute Selection of Arrhythmia for Electrocardiogram Signals with Fusion Learning Journal article
Yang, Jie, Li, Jinfeng, Lan, Kun, Wei, Anruo, Wang, Han, Huang, Shigao, Fong, Simon. Multi-Label Attribute Selection of Arrhythmia for Electrocardiogram Signals with Fusion Learning[J]. Bioengineering-Basel, 2022, 9(7).
Authors:  Yang, Jie;  Li, Jinfeng;  Lan, Kun;  Wei, Anruo;  Wang, Han; et al.
Favorite | TC[WOS]:2 TC[Scopus]:6 | Submit date:2022/09/30
Arrhythmia Recognition  Electrocardiogram Signals  Fusion Learning  Multi-label Attribute Selection  
Discriminable multi-label attribute selection for pre-course student performance prediction Journal article
Yang, Jie, Hu, Shimin, Wang, Qichao, Fong, Simon. Discriminable multi-label attribute selection for pre-course student performance prediction[J]. Entropy, 2021, 23(10).
Authors:  Yang, Jie;  Hu, Shimin;  Wang, Qichao;  Fong, Simon
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:2.1/2.2 | Submit date:2021/12/08
Educational Data Mining  Academic Early Warning System  Student Performance Prediction  Multi-label Learning  Attribute Selection  
An Optimal Choice of Cognitive Diagnostic Model for Second Language Listening Comprehension Test Journal article
Dong, Yanyun, Ma, Xiaomei, Wang, Chuang, Gao, Xuliang. An Optimal Choice of Cognitive Diagnostic Model for Second Language Listening Comprehension Test[J]. Frontiers in Psychology, 2021, 12, 608320.
Authors:  Dong, Yanyun;  Ma, Xiaomei;  Wang, Chuang;  Gao, Xuliang
Favorite | TC[WOS]:7 TC[Scopus]:11  IF:2.6/3.3 | Submit date:2021/12/07
Cognitive Diagnostic Model  Inter-attribute Relationship  L2 Listening Subskills  Mixed-cdms  Model Selection  
Broad Learning with Attribute Selection for Rheumatoid Arthritis Conference paper
Yang, Jie, Huang, Shigao, Tang, Rui, Hu, Quanyi, Lan, Kun, Wang, Han, Zhao, Qi, Fong, Simon. Broad Learning with Attribute Selection for Rheumatoid Arthritis[C]:IEEE, 2020, 552-558.
Authors:  Yang, Jie;  Huang, Shigao;  Tang, Rui;  Hu, Quanyi;  Lan, Kun; et al.
Favorite | TC[WOS]:4 TC[Scopus]:5 | Submit date:2021/03/04
Broad Learning  Attribute Selection  Disease Pre-diction  Rheumatoid Arthritis  
Quality enhancement of stochastic feature subset selection via genetic algorithms. Assessment in bioinformatics data sets Conference paper
Antonio J. Tallón-Ballesteros, Tengyue Li, Simon Fong. Quality enhancement of stochastic feature subset selection via genetic algorithms. Assessment in bioinformatics data sets[C], 2020, 55-56.
Authors:  Antonio J. Tallón-Ballesteros;  Tengyue Li;  Simon Fong
Favorite | TC[Scopus]:0 | Submit date:2021/03/09
Attribute Selection  Feature Subset Selection  Data Analytics  Classification  Multiple Class Problems  
On Learning Software Effort Estimation Conference paper
Sidra Tariq, Muhammad Usman, Raymond Wong, Yan Zhuang, Simon Fong. On Learning Software Effort Estimation[C]:IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2016, 79-84.
Authors:  Sidra Tariq;  Muhammad Usman;  Raymond Wong;  Yan Zhuang;  Simon Fong
Favorite | TC[WOS]:4 TC[Scopus]:6 | Submit date:2019/02/13
Effort Estimation  Machine Learning Techniques  Weka  Attribute Selection  Pre-processin  
Fuzzy clustering with the entropy of attribute weights Journal article
Zhou J., Chen L., Chen C.L.P., Zhang Y., Li H.-X.. Fuzzy clustering with the entropy of attribute weights[J]. Neurocomputing, 2016, 198, 125.
Authors:  Zhou J.;  Chen L.;  Chen C.L.P.;  Zhang Y.;  Li H.-X.
Favorite | TC[WOS]:117 TC[Scopus]:148 | Submit date:2018/10/30
Attribute-weighted Clustering  Feature Selection  Kernel Method  Maximum-entropy Regularization  
Attribute weight entropy regularization in fuzzy C-means algorithm for feature selection Conference paper
Zhou J., Chen C.L.P.. Attribute weight entropy regularization in fuzzy C-means algorithm for feature selection[C], 2011, 59-64.
Authors:  Zhou J.;  Chen C.L.P.
Favorite | TC[Scopus]:12 | Submit date:2019/02/11
Attribute Weight Entropy Regularization  Feature Selection  Fuzzy C-means  Weighted Fuzzy Clustering  
A taxonomy-based classification model by using abstraction and aggregation Conference paper
Alice Tang, Simon Fong. A taxonomy-based classification model by using abstraction and aggregation[C], 2011, 448-454.
Authors:  Alice Tang;  Simon Fong
Favorite |  | Submit date:2019/02/13
Data Mining  Decision Tree  Feature Selection  Preprocessing  Attribute Value Taxonomies  Visual Mining