UM

Browse/Search Results:  1-10 of 19 Help

Selected(0)Clear Items/Page:    Sort:
Organic crystal structure prediction via coupled generative adversarial networks and graph convolutional networks Journal article
Ye, Zhuyifan, Wang, Nannan, Zhou, Jiantao, Ouyang, Defang. Organic crystal structure prediction via coupled generative adversarial networks and graph convolutional networks[J]. Innovation, 2024, 5(2), 100562.
Authors:  Ye, Zhuyifan;  Wang, Nannan;  Zhou, Jiantao;  Ouyang, Defang
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:33.2/31.8 | Submit date:2024/04/02
Monte-carlo  Energy  Polymorph  
Opportunities and Challenges of Artificial Intelligence (AI) in Drug Delivery Book chapter
出自: Exploring Computational Pharmaceutics - Ai and Modeling in Pharma 4.0:wiley, 2024, 页码:10-58
Authors:  Ye, Zhuyifan;  Ouyang, Defang
Favorite | TC[Scopus]:0 | Submit date:2024/10/10
Artificial Intelligence  Deep Learning  Drug Delivery  Formulation Development  Machine Learning  Pharmaceutics  
How can machine learning and multiscale modeling benefit ocular drug development? Journal article
Wang, Nannan, Zhang, Yunsen, Wang, Wei, Ye, Zhuyifan, Chen, Hongyu, Hu, Guanghui, Ouyang, Defang. How can machine learning and multiscale modeling benefit ocular drug development?[J]. Advanced Drug Delivery Reviews, 2023.
Authors:  Wang, Nannan;  Zhang, Yunsen;  Wang, Wei;  Ye, Zhuyifan;  Chen, Hongyu; et al.
Favorite |   IF:15.2/17.6 | Submit date:2023/08/31
Predicting liposome formulations by the integrated machine learning and molecular modeling approaches Journal article
Han, Run, Ye, Zhuyifan, Zhang, Yunsen, Cheng, Yaxin, Zheng, Ying, Ouyang, Defang. Predicting liposome formulations by the integrated machine learning and molecular modeling approaches[J]. Asian Journal of Pharmaceutical Sciences, 2023, 18(3), 100811.
Authors:  Han, Run;  Ye, Zhuyifan;  Zhang, Yunsen;  Cheng, Yaxin;  Zheng, Ying; et al.
Favorite | TC[WOS]:13 TC[Scopus]:13  IF:10.7/9.0 | Submit date:2023/06/05
Formulation Prediction  Liposome  Machine Learning  Molecular Modeling  
Machine learning in accelerating microsphere formulation development Journal article
Deng, Jiayin, Ye, Zhuyifan, Zheng, Wenwen, Chen, Jian, Gao, Haoshi, Wu, Zheng, Chan, Ging, Wang, Yongjun, Cao, Dongsheng, Wang, Yanqing, Lee, Simon Ming Yuen, Ouyang, Defang. Machine learning in accelerating microsphere formulation development[J]. Drug Delivery and Translational Research, 2023, 13(4), 966-982.
Authors:  Deng, Jiayin;  Ye, Zhuyifan;  Zheng, Wenwen;  Chen, Jian;  Gao, Haoshi; et al.
Favorite | TC[WOS]:6 TC[Scopus]:8  IF:5.7/5.5 | Submit date:2023/01/30
Drug Release  Machine Learning  Microspheres  Molecular Dynamics Simulation  
How can machine learning and multiscale modeling benefit ocular drug development? Review article
2023
Authors:  Wang, Nannan;  Zhang, Yunsen;  Wang, Wei;  Ye, Zhuyifan;  Chen, Hongyu; et al.
Favorite | TC[WOS]:9 TC[Scopus]:16  IF:15.2/17.6 | Submit date:2023/06/05
Computational Pharmaceutics  In Silico modelIng & Simulation  Machine Learning  Mathematical Modeling  Molecular Modeling  Ocular Drug Development  Pharmacokinetic/pharmacodynamic Modeling  
Quantitative Analysis for Chinese and US-listed Pharmaceutical Companies by the LightGBM Algorithm Journal article
Zheng,Wenwen, Junjun Li,, Wang,Yu, Ye,Zhuyifan, Zhong,Hao, Kot,Hung Wan, Ouyang,Defang, Chan,Ging. Quantitative Analysis for Chinese and US-listed Pharmaceutical Companies by the LightGBM Algorithm[J]. Current Computer-Aided Drug Design, 2023, 19(6), 405-415.
Authors:  Zheng,Wenwen;  Junjun Li,;  Wang,Yu;  Ye,Zhuyifan;  Zhong,Hao; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.5/1.5 | Submit date:2023/08/03
Algorithm  Lightgbm  Machine Learning  Pharmaceutical Industry  Quantitative Analysis  r&d  
Development of in silico methodology for siRNA lipid nanoparticle formulations Journal article
Gao, Haoshi, Kan, Stanislav, Ye, Zhuyifan, Feng, Yuchen, Jin, Lei, Zhang, Xudong, Deng, Jiayin, Chan, Ging, Hu, Yuanjia, Wang, Yongjun, Cao, Dongsheng, Ji, Yuanhui, Liang, Mingtao, Li, Haifeng, Ouyang, Defang. Development of in silico methodology for siRNA lipid nanoparticle formulations[J]. Chemical Engineering Journal, 2022, 442, 136310.
Authors:  Gao, Haoshi;  Kan, Stanislav;  Ye, Zhuyifan;  Feng, Yuchen;  Jin, Lei; et al.
Favorite | TC[WOS]:15 TC[Scopus]:16  IF:13.3/13.2 | Submit date:2022/05/13
Cationic Lipids  Knockdown Efficiency  Lipid Nanoparticle  Machine Learning  Molecular Dynamic Simulation  Sirna  
In silico formulation prediction of drug/cyclodextrin/polymer ternary complexes by machine learning and molecular modeling techniques Journal article
Li, Junjun, Gao, Hanlu, Ye, Zhuyifan, Deng, Jiayin, Ouyang, Defang. In silico formulation prediction of drug/cyclodextrin/polymer ternary complexes by machine learning and molecular modeling techniques[J]. Carbohydrate Polymers, 2022, 275(118712).
Authors:  Li, Junjun;  Gao, Hanlu;  Ye, Zhuyifan;  Deng, Jiayin;  Ouyang, Defang
Favorite | TC[WOS]:16 TC[Scopus]:16  IF:10.7/10.2 | Submit date:2022/02/21
Machine Learning  Molecular Modeling  Random Forest  Solubility Prediction  Ternary Cyclodextrin Complexes  
Prediction of small-molecule compound solubility in organic solvents by machine learning algorithms Journal article
Ye, Zhuyifan, Ouyang, Defang. Prediction of small-molecule compound solubility in organic solvents by machine learning algorithms[J]. Journal of Cheminformatics, 2021, 13(1), 98.
Authors:  Ye, Zhuyifan;  Ouyang, Defang
Favorite | TC[WOS]:40 TC[Scopus]:42  IF:7.1/9.3 | Submit date:2022/01/14
Deep Learning  Lightgbm  Machine Learning  Organic Solvents  Qspr  Solubility Prediction