UM

Browse/Search Results:  1-10 of 22 Help

Selected(0)Clear Items/Page:    Sort:
Deep-Learning-Based Cross-Modality Striatum Segmentation for Dopamine Transporter SPECT in Parkinson’s Disease Journal article
Haiyan Wang, Han Jiang, Gefei Chen, Yu Du, Zhonglin Lu, Zhanli Hu,, MOK SENG PENG. Deep-Learning-Based Cross-Modality Striatum Segmentation for Dopamine Transporter SPECT in Parkinson’s Disease[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2024, 8(7), 752-761.
Authors:  Haiyan Wang;  Han Jiang;  Gefei Chen;  Yu Du;  Zhonglin Lu; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:4.6/3.6 | Submit date:2024/08/08
Cross-modality  Deep Learning (Dl)  Parkinson’s Disease (Pd)  Spect  Striatum Segmentation  
PET/CT-Based Absorbed Dose Maps in 90Y Selective Internal Radiation Therapy Correlate with Spatial Changes in Liver Function Derived from Dynamic MRI Journal article
LU ZHONGLIN, Daniel F Polan, Lise Wei, Madhava P Aryal, Kellen Fitzpatrick, Chang Wang, Kyle C Cuneo, Joseph R Evans, Molly E Roseland, Joseph J Gemmete, Jared A Christensen, Baljendra S Kapoor, Justin K Mikell, Yue Cao, MOK SENG PENG, Yuni K Dewaraja. PET/CT-Based Absorbed Dose Maps in 90Y Selective Internal Radiation Therapy Correlate with Spatial Changes in Liver Function Derived from Dynamic MRI[J]. Journal of Nuclear Medicine, 2024, 65(8), 1224-1230.
Authors:  LU ZHONGLIN;  Daniel F Polan;  Lise Wei;  Madhava P Aryal;  Kellen Fitzpatrick; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:9.1/9.1 | Submit date:2024/08/08
Sirt  90y Pet/ct  Dgae Mri  Dosimetry  Absorbed Dose–toxicity Relationship  
Radiomics incorporating deep features for predicting Parkinson’s disease in 123I-Ioflupane SPECT Journal article
Jiang, Han, Du, Yu, Lu, Zhonglin, Wang, Bingjie, Zhao, Yonghua, Wang, Ruibing, Zhang, Hong, Mok, Greta S.P.. Radiomics incorporating deep features for predicting Parkinson’s disease in 123I-Ioflupane SPECT[J]. EJNMMI Physics, 2024, 11(1), 60.
Authors:  Jiang, Han;  Du, Yu;  Lu, Zhonglin;  Wang, Bingjie;  Zhao, Yonghua; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:3.0/3.7 | Submit date:2024/08/05
123i-ioflupane  Deep Feature  Deep Learning  Parkinson’s Disease  Radiomics  Spect  
Radiomics incorporating deep features for predicting Parkinson's disease in 123I-Ioflupane SPECT Journal article
Han Jiang, Yu Du, Zhonglin Lu, Bingjie Wang, ZHAO YONGHUA, Ruibing Wang, Hong Zhang, Greta S P Mok. Radiomics incorporating deep features for predicting Parkinson's disease in 123I-Ioflupane SPECT[J]. EJNMMI Phys, 2024, 11(1), 60.
Authors:  Han Jiang;  Yu Du;  Zhonglin Lu;  Bingjie Wang;  ZHAO YONGHUA; et al.
Favorite |  | Submit date:2024/08/03
A 3D Deep Learning-based Segmentation Model for Unified and Fully Automated Segmentation of Lungs, Normal Liver and Tumors for Y-90 Radioembolization Dosimetry Conference paper
Gefei Chen, Haiyan Wang, Zhonglin Lu, Ko-Han Lin, MOK SENG PENG. A 3D Deep Learning-based Segmentation Model for Unified and Fully Automated Segmentation of Lungs, Normal Liver and Tumors for Y-90 Radioembolization Dosimetry[C], 2024.
Authors:  Gefei Chen;  Haiyan Wang;  Zhonglin Lu;  Ko-Han Lin;  MOK SENG PENG
Favorite |  | Submit date:2024/08/08
Segment Anything Model for SPECT (SAMS): Novel implementation in SPECT imaging for tumor segmentation Conference paper
Zhonglin Lu, Zongyu Li, Yixuan Jia, Gefei Chen, Molly Roseland, MOK SENG PENG, Yuni K Dewaraja. Segment Anything Model for SPECT (SAMS): Novel implementation in SPECT imaging for tumor segmentation[C], 2024.
Authors:  Zhonglin Lu;  Zongyu Li;  Yixuan Jia;  Gefei Chen;  Molly Roseland; et al.
Favorite |  | Submit date:2024/08/12
Artifact-free partial volume correction based on spatially variant point spread function with non-negativity constrain for Lu-177-PSMA SPECT Conference paper
Yibin Liu, Gefei Chen, Zhonglin Lu, Kuangyu Shi, MOK SENG PENG. Artifact-free partial volume correction based on spatially variant point spread function with non-negativity constrain for Lu-177-PSMA SPECT[C], 2024.
Authors:  Yibin Liu;  Gefei Chen;  Zhonglin Lu;  Kuangyu Shi;  MOK SENG PENG
Favorite |  | Submit date:2024/08/12
PET/CT-based Absorbed Dose Maps in Y-90 SIRT Correlate with Spatial Changes in Liver Function derived from Dynamic MRI Conference paper
Zhonglin Lu, Daniel Polan, Lise Wei, Madhava Aryal, Kellen Fitzpatrick, Chang Wang, Kyle Cuneo, Joseph Evans, Molly Roseland, Joseph Gemmete, Jared Christensen, Baljendra Kapoor, Justin Mikell, Yue Cao, MOK SENG PENG, Yuni K Dewaraja. PET/CT-based Absorbed Dose Maps in Y-90 SIRT Correlate with Spatial Changes in Liver Function derived from Dynamic MRI[C], 2024.
Authors:  Zhonglin Lu;  Daniel Polan;  Lise Wei;  Madhava Aryal;  Kellen Fitzpatrick; et al.
Favorite |  | Submit date:2024/08/12
Total variation regularized expectation maximization reconstruction improves 68Ga-FAPI-04 PET/CT image quality as compared to ordered subset expectation maximization reconstruction Journal article
Hanxiang LIU, Lin LIU, Shijie XU, Zhonglin LU, Mo SP(莫昇萍), Yingwei WANG, Yi TAO, Yue CHEN. Total variation regularized expectation maximization reconstruction improves 68Ga-FAPI-04 PET/CT image quality as compared to ordered subset expectation maximization reconstruction[J]. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2023, 67(4), 280 - 286.
Authors:  Hanxiang LIU;  Lin LIU;  Shijie XU;  Zhonglin LU;  Mo SP(莫昇萍); et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.3/1.3 | Submit date:2022/09/28
Image Processing, Computer-assisted  Positron Emission Tomography Computed Tomography  68ga-fapi  
Lu-177-PSMA dosimetry for kidneys and tumors based on SPECT images at two imaging time points Journal article
Chen, Gefei, Lu, Zhonglin, Jiang, Han, Afshar-Oromieh, Ali, Rominger, Axel, Shi, Kuangyu, Mok, Greta S.P.. Lu-177-PSMA dosimetry for kidneys and tumors based on SPECT images at two imaging time points[J]. Frontiers in Medicine, 2023, 10, 1246881.
Authors:  Chen, Gefei;  Lu, Zhonglin;  Jiang, Han;  Afshar-Oromieh, Ali;  Rominger, Axel; et al.
Favorite | TC[WOS]:6 TC[Scopus]:5  IF:3.1/3.4 | Submit date:2024/02/22
Curve Fitting  Dosimetry  Lu-177 Psma  Single Time Point  Spect