UM

Browse/Search Results:  1-2 of 2 Help

Selected(0)Clear Items/Page:    Sort:
Machinery multi-sensor fault diagnosis based on adaptive multivariate feature mode decomposition and multi-attention fusion residual convolutional neural network Journal article
Yan Xiaoan, Yan Wangji, Xu Yadong, Yuen Kaveng. Machinery multi-sensor fault diagnosis based on adaptive multivariate feature mode decomposition and multi-attention fusion residual convolutional neural network[J]. Mechanical Systems and Signal Processing, 2023, 202, 110664.
Authors:  Yan Xiaoan;  Yan Wangji;  Xu Yadong;  Yuen Kaveng
Adobe PDF | Favorite | TC[WOS]:28 TC[Scopus]:31  IF:7.9/8.0 | Submit date:2023/08/30
Multivariate Feature Mode Decomposition  Multi-attention Fusion Residual Convolutional Neural Network  Multi-sensor Data  Machinery Fault Diagnosis  
Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline Journal article
Zhang, Jian, Zheng, Caiyan, Zhang, Maolin, Qiu, Yajun, Xu, Qi, Cheong, Weng Chon, Chen, Wenxing, Zheng, Lirong, Gu, Lin, Hu, Zhengpeng, Wang, Dingsheng, Li, Yadong. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline[J]. Nano Research, 2020, 13(11), 3082-3087.
Authors:  Zhang, Jian;  Zheng, Caiyan;  Zhang, Maolin;  Qiu, Yajun;  Xu, Qi; et al.
Favorite | TC[WOS]:214 TC[Scopus]:217  IF:9.5/9.0 | Submit date:2021/11/30
Metal Oxide  Nitrogen-doped Carbon  Nitrogen-doping Type  Single-atom Site Catalyst  Transfer Hydrogenation