×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [5]
THE STATE KEY LA... [1]
Authors
HU GUANGHUI [4]
Document Type
Journal article [6]
Date Issued
2024 [1]
2023 [1]
2021 [2]
2020 [1]
2019 [1]
Language
英語English [5]
Source Publication
Advances in Appl... [2]
JOURNAL OF SCIEN... [1]
Journal of Compu... [1]
Numerical Mathem... [1]
Numerical Mathem... [1]
Indexed By
SCIE [6]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-6 of 6
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Towards chemical accuracy using a multi-mesh adaptive finite element method in all-electron density functional theory
Journal article
Kuang, Yang, Shen, Yedan, Hu, Guanghui. Towards chemical accuracy using a multi-mesh adaptive finite element method in all-electron density functional theory[J]. Journal of Computational Physics, 2024, 518, 113312.
Authors:
Kuang, Yang
;
Shen, Yedan
;
Hu, Guanghui
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
3.8
/
4.5
|
Submit date:2024/08/31
Chemical Accuracy
Kohn-sham Equation
Adaptive Finite Element Method
Multi-mesh Method
A Convergence Analysis of a Structure-Preserving Gradient Flow Method for the All-Electron Kohn-Sham Model
Journal article
Shen, Yedan, Wang, Ting, Zhou, Jie, Hu, Guanghui. A Convergence Analysis of a Structure-Preserving Gradient Flow Method for the All-Electron Kohn-Sham Model[J]. Numerical Mathematics: Theory, Methods and Applications, 2023, 16(3), 597-621.
Authors:
Shen, Yedan
;
Wang, Ting
;
Zhou, Jie
;
Hu, Guanghui
Favorite
|
TC[WOS]:
5
TC[Scopus]:
2
IF:
1.9
/
1.3
|
Submit date:2023/08/31
Kohn-sham Density Functional Theory
Gradient Flow Model
Structure-preserving
Linear Scheme
Convergence Analysis
An h-adaptive finite element solution of the relaxation non-equilibrium model for gravity-driven fingers
Journal article
Bian, Huanying, Shen, Yedan, Hu, Guanghui. An h-adaptive finite element solution of the relaxation non-equilibrium model for gravity-driven fingers[J]. Advances in Applied Mathematics and Mechanics, 2021, 13(6), 1418-1440.
Authors:
Bian, Huanying
;
Shen, Yedan
;
Hu, Guanghui
Favorite
|
TC[WOS]:
4
TC[Scopus]:
4
IF:
1.5
/
1.1
|
Submit date:2022/05/13
a Posteriori Error Estimation
Fingering Phenomenon
H-adaptive Mesh Method
Non-equilibrium Richard Equation
Porous Media Flow
An h -Adaptive Finite Element Solution of the Relaxation Non-Equilibrium Model for Gravity-Driven Fingers
Journal article
Huanying Bian, Yedan Shen, Guanghui HU. An h -Adaptive Finite Element Solution of the Relaxation Non-Equilibrium Model for Gravity-Driven Fingers[J]. Advances in Applied Mathematics and Mechanics, 2021, 13(6), 1418-1440.
Authors:
Huanying Bian
;
Yedan Shen
;
Guanghui HU
Favorite
|
TC[WOS]:
4
TC[Scopus]:
4
IF:
1.5
/
1.1
|
Submit date:2022/08/31
Non-equilibrium Richard Equation
H-adaptive Mesh Method
a Posteriori Error Estimation
Fingering Phenomenon
Porous Media Flow
An implicit solver for the time-dependent kohn-sham equation
Journal article
Yang, Lei, Shen, Yedan, Hu, Zhicheng, Hu, Guanghui. An implicit solver for the time-dependent kohn-sham equation[J]. Numerical Mathematics, 2020, 14(1), 261-284.
Authors:
Yang, Lei
;
Shen, Yedan
;
Hu, Zhicheng
;
Hu, Guanghui
Favorite
|
TC[WOS]:
3
TC[Scopus]:
4
IF:
1.9
/
1.3
|
Submit date:2021/03/11
Complex-valued Algebraic Multigrid Methods
Finite Element Methods
H-adaptive Mesh Methods
Implicit Midpoint Scheme
Time-dependent Kohn-sham Equation
An Asymptotics-Based Adaptive Finite Element Method for Kohn–Sham Equation
Journal article
Shen, Yedan, Kuang, Yang, Hu, Guanghui. An Asymptotics-Based Adaptive Finite Element Method for Kohn–Sham Equation[J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79(1), 464–492.
Authors:
Shen, Yedan
;
Kuang, Yang
;
Hu, Guanghui
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
2.8
/
2.7
|
Submit date:2019/06/03
Electronic Structure Calculation
Coarsening Mesh
Kohn–sham Density Functional Theory
Adaptive Finite Element Method
Ground State Energy