UM

Browse/Search Results:  1-10 of 13 Help

Selected(0)Clear Items/Page:    Sort:
Reproducing kernel representation of the solution of second order linear three-point boundary value problem Journal article
Bai, Hongfang, Leong, Ieng Tak, Dang, Pei. Reproducing kernel representation of the solution of second order linear three-point boundary value problem[J]. Mathematical Methods in the Applied Sciences, 2022, 45(17), 11181-11205.
Authors:  Bai, Hongfang;  Leong, Ieng Tak;  Dang, Pei
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.1/2.0 | Submit date:2022/06/14
Numerical Solutions  Reproducing Kernel Hilbert Space  Three-point Boundary Value Problem  W-poafd  Weak Maximal Selection Principle  
Effective numerical evaluation of the double Hilbert transform Journal article
Sun,Xiaoyun, Dang,Pei, Leong,Ieng Tak, Ku,Min. Effective numerical evaluation of the double Hilbert transform[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43(7), 4086-4106.
Authors:  Sun,Xiaoyun;  Dang,Pei;  Leong,Ieng Tak;  Ku,Min
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.1/2.0 | Submit date:2021/03/11
2d Adaptive Fourier Decomposition  2d Mechanical Quadrature Method  Double Hilbert Transform  Trigonometric Interpolation  
Hilbert transformation and representation of the ax + b group Journal article
Pei Dang, Hua Liu, Tao Qian. Hilbert transformation and representation of the ax + b group[J]. Canadian Mathematical Bulletin, 2018, 61(1), 70-84.
Authors:  Pei Dang;  Hua Liu;  Tao Qian
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:0.5/0.6 | Submit date:2019/02/11
Hilbert Transform  Singular Integral  The Ax + b Group  
Hardy-hodge decomposition of vector fields in ℝn Journal article
Laurent Baratchart, Pei Dang, Tao Qian. Hardy-hodge decomposition of vector fields in ℝn[J]. Transactions of the American Mathematical Society, 2018, 370(3), 2005-2022.
Authors:  Laurent Baratchart;  Pei Dang;  Tao Qian
Favorite | TC[WOS]:4 TC[Scopus]:5  IF:1.2/1.3 | Submit date:2019/02/11
Clifford coherent state transforms on spheres Journal article
Dang, Pei, Mourao, Jose, Nunes, Joao P., Qian, Tao. Clifford coherent state transforms on spheres[J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 124, 225-232.
Authors:  Dang, Pei;  Mourao, Jose;  Nunes, Joao P.;  Qian, Tao
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:1.6/1.3 | Submit date:2018/10/30
Clifford Analysis  Coherent State Transforms  Cauchy-kowalewski Extension  
Uncertainty Principle and Phase–Amplitude Analysis of Signals on the Unit Sphere Journal article
Pei Dang, Tao Qian, Qiuhui Chen. Uncertainty Principle and Phase–Amplitude Analysis of Signals on the Unit Sphere[J]. Advances in Applied Clifford Algebras, 2017, 27(4), 2985-3013.
Authors:  Pei Dang;  Tao Qian;  Qiuhui Chen
Favorite | TC[WOS]:6 TC[Scopus]:7 | Submit date:2019/02/11
Phase Derivative  Spherical Dirac Operator  Spherical Hilbert Transform  Spherical Signals  Uncertainty Principle  
A Frame Theory of Hardy Spaces with the Quaternionic and the Clifford Algebra Settings Journal article
Chen, Qiuhui, Dang, Pei, Qian, Tao. A Frame Theory of Hardy Spaces with the Quaternionic and the Clifford Algebra Settings[J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27(2), 1073-1101.
Authors:  Chen, Qiuhui;  Dang, Pei;  Qian, Tao
Favorite | TC[WOS]:6 TC[Scopus]:8  IF:1.1/1.1 | Submit date:2018/10/30
Frame  Quaternion-hardy Space  Fourier Transform  Group Representation  
Adaptive Fourier decomposition-based Dirac type time-frequency distribution Journal article
Zhang, Liming, Qian, Tao, Mai, Weixiong, Dang, Pei. Adaptive Fourier decomposition-based Dirac type time-frequency distribution[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40(8), 2815-2833.
Authors:  Zhang, Liming;  Qian, Tao;  Mai, Weixiong;  Dang, Pei
Favorite | TC[WOS]:5 TC[Scopus]:7  IF:2.1/2.0 | Submit date:2018/10/30
Instantaneous Frequency  Mono-component  Multi-component  Adaptive Fourier Decomposition  Time-frequency Distribution  The Best N-rational Approximation  
New Trends in Analysis and Interdisciplinary Applications Book
Pei Dang, Min Ku, Tao Qian, Luigi G. Rodino. New Trends in Analysis and Interdisciplinary Applications[M]. Germany:Birkhäuser Basel, 2017.
Authors:  Pei Dang;  Min Ku;  Tao Qian;  Luigi G. Rodino
Favorite | TC[Scopus]:0 | Submit date:2019/06/17
Extra-strong uncertainty principles in relation to phase derivative for signals in Euclidean spaces Journal article
Pei Dang, Tao Qian, Yan Yang. Extra-strong uncertainty principles in relation to phase derivative for signals in Euclidean spaces[J]. Journal of Mathematical Analysis and Applications, 2016, 437(2), 912-940.
Authors:  Pei Dang;  Tao Qian;  Yan Yang
Favorite | TC[WOS]:8 TC[Scopus]:9 | Submit date:2019/02/11
Amplitude Derivative  Hilbert Transform  Phase Derivative  Signals In Euclidean Spaces  Uncertainty Principle